首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Similar to mammals, several viral-sensing pattern recognition receptors (PRR) have been identified in birds including Toll-like receptors (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR). Avian TLR are slightly different from their mammalian counterparts, including the pseudogene TLR8, the absence of TLR9, and the presence of TLR1La, TLR1Lb, TLR15, and TLR21. Avian TLR3 and TLR7 are involved in RNA virus recognition, especially highly pathogenic avian influenza virus (HPAIV), while TLR15 and TLR21 are potential sensors that recognize both RNA viruses and bacteria. However, the agonist of TLR15 is still unknown. Interestingly, chickens, unlike ducks, geese and finches, lack RIG-I, however they do express melanoma differentiation-associated gene 5 (MDA5) which functionally compensates for the absence of RIG-I. Duck RIG-I is the cytosolic recognition element for HPAIV recognition, while chicken cells sense HPAIV through MDA5. However, the contributions of MDA5 and RIG-I to IFN-β induction upon HPAIV infection is different, and this may contribute to the chicken’s susceptibility to highly pathogenic influenza. It is noteworthy that the interactions between avian DNA viruses and PRR have not yet been reported. Furthermore, the role for avian Nod-like receptors (NLR) in viral immunity is largely unknown. In this review, recent advances in the field of viral recognition by different types of PRR in birds are summarized. In particular, the tissue and cellular distribution of avian PRR, the recognition and activation of PRR by viruses, and the subsequent expression of innate antiviral genes such as type I IFN and proinflammatory cytokines are discussed.  相似文献   

2.
Retinoic acid inducible gene I (RIG-I) is a cytosolic pattern recognition receptor that senses pathogen-associated molecular patterns (PAMPs). Muscovy duck (Cairina moschata) is a large duck different from other species of ducks, and is more susceptible to some microbial pathogens. In this study, the Muscovy duck RIG-I gene (MdRIG-I) was identified. Quantitative RT-PCR showed that MdRIG-I mRNA was widely expressed in different tissues, especially in those with mucosa. RIG-I null DF-1 cells transfected with DNA constructs encoding MdRIG-I or CARDs domain can activate IRF-3 and NF-κB to up-regulated activity of IFN-β promoter. The components of the signaling pathway downstream of RIG-I in mammalian cells including IRF-3, NF-κB, IFN-β and the IFN-stimulated genes Mx-1, PKR and MDA5 were significantly up-regulated in CARDs-overexpressing-DF-1 cells. Implicating RIG-I in the antiviral response to an infection in vivo, we found that RIG-I expression in brain, spleen, lung and bursa were up-regulated in ducks challenged with H9N2 avian influenza virus (AIV), whose six internal genes were closely related to the H7N9 and H10N8 AIV. In vitro, DF-1 cells transfected with MdRIG-I plasmid can respond significantly to H9N2 AIV, evident through enhancement of IFN-β promoter activity and decreased virus titer. Altogether, these results indicated that MdRIG-I is a novel member of RLR gene family, engaging in the early stage of antiviral innate immunity.  相似文献   

3.
Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7–virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.  相似文献   

4.
Low and highly pathogenic avian influenza viruses (LPAIVs and HPAIVs, respectively) have been co-circulating in poultry populations in Asian, Middle Eastern, and African countries. In our avian-flu surveillance in Vietnamese domestic ducks, viral genes of LPAIV and HPAIV have been frequently detected in the same individual. To assess the influence of LPAIV on the pathogenicity of H5 HPAIV in domestic ducks, an experimental co-infection study was performed. One-week-old domestic ducks were inoculated intranasally and orally with phosphate-buffered saline (PBS) (control) or 106 EID50 of LPAIVs (A/duck/Vietnam/LBM678/2014 (H6N6) or A/Muscovy duck/Vietnam/LBM694/2014 (H9N2)). Seven days later, these ducks were inoculated with HPAIV (A/Muscovy duck/Vietnam/LBM808/2015 (H5N6)) in the same manner. The respective survival rates were 100% and 50% in ducks pre-infected with LBM694 or LBM678 strains and both higher than the survival of the control group (25%). The virus titers in oral/cloacal swabs of each LPAIV pre-inoculation group were significantly lower at 3–5 days post-HPAIV inoculation. Notably, almost no virus was detected in swabs from surviving individuals of the LBM678 pre-inoculation group. Antigenic cross-reactivity among the viruses was not observed in the neutralization test. These results suggest that pre-infection with LPAIV attenuates the pathogenicity of HPAIV in domestic ducks, which might be explained by innate and/or cell-mediated immunity induced by the initial infection with LPAIV.  相似文献   

5.
Porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infections are characterized by prolonged viremia and viral shedding consistent with incomplete immunity. Type I interferons (IFN) are essential for mounting efficient antiviral innate and adaptive immune responses, but in a recent study, North American PRRSV genotype 2 isolates did not induce, or even strongly inhibited, IFN-α in plasmacytoid dendritic cells (pDC), representing “professional IFN-α-producing cells”. Since inhibition of IFN-α expression might initiate PRRSV pathogenesis, we further characterized PRRSV effects and host modifying factors on IFN-α responses of pDC. Surprisingly, a variety of type 1 and type 2 PRRSV directly stimulated IFN-α secretion by pDC. The effect did not require live virus and was mediated through the TLR7 pathway. Furthermore, both IFN-γ and IL-4 significantly enhanced the pDC production of IFN-α in response to PRRSV exposure. PRRSV inhibition of IFN-α responses from enriched pDC stimulated by CpG oligodeoxynucleotides was weak or absent. VR-2332, the prototype genotype 2 PRRSV, only suppressed the responses by 34%, and the highest level of suppression (51%) was induced by a Chinese highly pathogenic PRRSV isolate. Taken together, these findings demonstrate that pDC respond to PRRSV and suggest that suppressive activities on pDC, if any, are moderate and strain-dependent. Thus, pDC may be a source of systemic IFN-α responses reported in PRRSV-infected animals, further contributing to the puzzling immunopathogenesis of PRRS.  相似文献   

6.
7.
《Veterinary microbiology》2015,175(2-4):232-243
Muscovy duck reovirus (MDRV) is a highly pathogenic virus in waterfowl and causes significant economic loss in the poultry industry worldwide. Because the host innate immunity plays a key role in defending against virus invasion, more and more attentions have been paid to the immune response triggered by viral infection. Here we found that the genomic RNA of MDRV was able to rapidly induce the production of interferons (IFNs) in host. Mechanistically, MDRV infection induced robust expression of IFNs in host mainly through RIG-I, MDA5 and TLR3-dependent signaling pathways. In addition, we observed that silencing VISA expression in 293T cells could significantly inhibit the secretion of IFNs. Remarkably, the production of IFNs was reduced by inhibiting the activation of NF-κB or knocking down the expression of IRF-7. Furthermore, our study showed that treatment of 293T cells and Muscovy duck embryo fibroblasts with IFNs markedly impaired MDRV replication, suggesting that these IFNs play an important role in antiviral response during the MDRV infection. Importantly, we also detected the induced expression of RIG-I, MDA5, TLR3 and type I IFN in Muscovy ducks infected with MDRV at different time points post infection. The results from in vivo studies were consistent with those in 293T cells infected with MDRV. Taken together, our findings reveal that the host can resist MDRV invasion by activating innate immune response involving RIG-I, MDA5 and TLR3-dependent signaling pathways that govern IFN production.  相似文献   

8.
Respiratory diseases, including inflammatory airway disease (IAD), viral and bacterial infections, are common problems in exercising horses. The airway epithelium constitutes a major physical barrier against airborne infections and plays an essential role in the lung innate immune response mainly through toll-like receptor (TLR) activation. The aim of this study was to develop a model for the culture of equine bronchial epithelial cells (EBEC) in vitro and to explore EBEC innate immune responses in trained horses. Bronchial epithelial biopsies were taken from 6 adult horses during lower airway endoscopy. EBEC were grown in vitro by an explant method. The innate immune response of EBEC was evaluated in vitro by treatment with TLR ligands. TLR3 is the most strongly expressed TLR at the mRNA level in EBEC and stimulation of EBEC with Poly(I:C), an analog of viral dsRNA, triggers a strong secretion of IFN-β, TNF-α, IL-6 and CXCL8. We further evaluated the EBEC innate immune response in horses that underwent a 4-month-training program. While training had no effect on TLR mRNA expression in EBEC as well as in bronchial biopsies, it increased the production of IFN-β after stimulation with a TLR3 ligand and decreased the secretion of TNF-α and IL-6 after stimulation with a TLR2 and TLR3 ligand. These findings may be implicated in the increased risk for viral and bacterial infections observed in sport horses. Altogether, we report a successful model for the culture of EBEC that can be applied to the investigation of pathophysiologic conditions in longitudinal studies.  相似文献   

9.
Salmonid alphavirus subtype-3 (SAV-3) infection in Atlantic salmon is exclusively found in Norway. The salmonid alphaviruses have been well characterized at the genome level but there is limited information about the host-pathogen interaction phenomena. This study was undertaken to characterize the replication and spread of SAV-3 in internal organs of experimentally infected Atlantic salmon and the subsequent innate and adaptive immune responses. In addition, suitability of a cohabitation challenge model for this virus was also examined. Groups of fish were infected by intramuscular injection (IM), cohabited (CO) or kept uninfected in a separate tank. Samples of pancreas, kidney, spleen, heart and skeletal muscles were collected at 2, 4 and 8 weeks post infection (wpi). Pathological changes were assessed by histology concurrently with viral loads and mRNA expression of immune genes by real time RT-PCR. Pathological changes were only observed in the pancreas and heart (target organs) of both IM and CO groups, with changes appearing first in the pancreas (2 wpi) in the former. Lesions with increasing severity over time coincided with high viral loads despite significant induction of IFN-α, Mx and ISG15. IFN-γ and MHC-I were expressed in all tissues examined and their induction appeared in parallel with that of IL-10. Inflammatory genes TNF-α, IL-12 and IL-8 were only induced in the heart during pathology while T cell-related genes CD3ε, CD4, CD8, TCR-α and MHC-II were expressed in target organs at 8 wpi. These findings suggest that the onset of innate responses came too late to limit virus replication. Furthermore, SAV-3 infections in Atlantic salmon induce Th1/cytotoxic responses in common with other alphaviruses infecting higher vertebrates. Our findings demonstrate that SAV-3 can be transmitted via the water making it suitable for a cohabitation challenge model.  相似文献   

10.
To acquire epidemiological data on the bovine viral diarrhea virus (BVDV) and identify cattle persistently infected (PI) with this virus, 4,327 samples from Holstein dairy cows were screened over a four-year period in Beijing, China. Eighteen BVD viruses were isolated, 12 from PI cattle. Based on genetic analysis of their 5''-untranslated region (5''-UTR), the 18 isolates were assigned to subgenotype BVDV-1m, 1a, 1d, 1q, and 1b. To investigate the innate immune responses in the peripheral-blood mononuclear cells of PI cattle, the expression of Toll-like receptors (TLRs), RIG-I-like receptors, interferon-α (IFN-α), IFN-β, myxovirus (influenza virus) resistance 1 (MX1), and interferon stimulatory gene 15 (ISG15) was assessed by qPCR. When compared with healthy cattle, the expression of TLR-7, IFN-α, and IFN-β mRNA was downregulated, but the expression of MX1 and ISG-15 mRNA was upregulated in PI cattle. Immunoblotting analysis revealed that the expression of interferon regulatory factor 3 (IRF-3) and IRF-7 was lower in PI cattle than in healthy cattle. Thus, BVDV-1m and 1a are the predominant subgenotypes in the Beijing region, and the strains are highly divergent. Our findings also suggest that the TLR-7/IRF-7 signaling pathway plays a role in evasion of host restriction by BVDV.  相似文献   

11.
Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-015-0174-3) contains supplementary material, which is available to authorized users.  相似文献   

12.
This report describes a whole-blood flow cytometric method for the determination of intracellular cytokines IFN-γ and IL-4 in canine T lymphocyte subpopulations. Conjugated anti-cytokine antibodies and commercially available reagents for cell fixation and permeabilization were used. Canine peripheral blood was cultured with a combination of phorbol-12-myristate-13-acetate (PMA) and ionomycin to promote cytokine synthesis in each cell, along with monensin to increase the sensitivity of the method by retaining IFN-γ and IL-4 within the cell to detectable levels. The optimum concentrations of PMA and ionomycin were determined. Maximum IFN-γ expression from both CD4+ and CD8+ T lymphocytes was detected after 6 h of incubation of cell culture, while maximum IL-4 production took 6 h from CD4+ cells and 4 h from CD8+ cells. This method is a simple immunologic technique for measuring intracellular cytokines which could be of value in the investigation of canine immunological response mainly in various intracellular and extracellular infections, since IFN-γ and IL-4 are considered key cytokines activating the cellular and humoral immunity, respectively.  相似文献   

13.
Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.  相似文献   

14.
This study was conducted to investigate the effects of early supplementation during 4 to 18 d of age with Lactobacillus plantarum (LP) in liquid diets on intestinal innate immune response in young piglets infected with enterotoxigenic Escherichia coli (ETEC) K88. Seventy-two barrow piglets at 4 d old were assigned to basal or LP-supplemented liquid diet (5 × 1010 CFU·kg−1). On day 15, piglets from each group were orally challenged with either ETEC K88 (1 × 108 CFU·kg−1) or the same amount of phosphate-buffered saline. The intestinal mucosa, mesenteric lymph node (MLN), and spleen samples were collected on day 18. Here, we found that LP pretreatment significantly decreased the mRNA relative expression of inflammatory cytokines (interleukin [IL]-1β, IL-8, and tumor necrosis factor-α), porcine β-defensin 2 (pBD-2), and mucins (MUC1 and MUC4) in the jejunal mucosa in piglets challenged with ETEC K88 (P < 0.05). Moreover, LP significantly decreased the ileal mucosa mRNA relative expression of IL-8 and MUC4 in young piglets challenged with ETEC K88 (P < 0.05). Furthermore, the piglets of the LP + ETEC K88 group had lower protein levels of IL-8, secretory immunoglobulin A, pBD-2, and MUC4 in the jejunal mucosa than those challenged with ETEC K88 (P < 0.05). Besides, LP supplementation reduced the percentage of gamma/delta T cells receptor (γδTCR) and CD172a+ (SWC3+) cells in MLN and the percentage of γδTCR cells in the spleen of young piglets after the ETEC K88 challenge. Supplementation with LP in liquid diets prevented the upregulated protein abundance of toll-like receptor (TLR) 4, phosphorylation-p38, and phosphorylation-extracellular signal-regulated protein kinases in the jejunal mucosa induced by ETEC K88 (P < 0.05). In conclusion, LP supplementation in liquid diet possesses anti-inflammatory activity and modulates the intestinal innate immunity during the early life of young piglets challenged with ETEC K88, which might be attributed to the suppression of TLR4-mediated mitogen-activated protein kinase signaling pathways. Early supplementation with LP in liquid diets regulates the innate immune response, representing a promising immunoregulation strategy for maintaining intestinal health in weaned piglets.  相似文献   

15.
Vaccination is the most cost effective control measure for Johne’s disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1β and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.

Electronic supplementary material

The online version of this article (doi:10.1186/s13567-014-0112-9) contains supplementary material, which is available to authorized users.  相似文献   

16.
黑素瘤差异化相关基因5(melanoma differentiation associated gene 5,MDA5)为一类胞内模式识别受体,能够识别入侵病毒的RNA链,在先天性免疫中发挥重要的抗病毒作用.本研究根据已发表的人和鸡MDA5基因序列设计引物,用overlap PCR技术从鹅成纤维细胞(goose embryo fibroblast cells,GEF)中扩增出鹅的MDA5基因,经序列测定发现它与鸡的MDA5序列有很高的同源性.将鹅MDA5真核表达质粒转染HEK-293T细胞,并用Poly(I:C)进行刺激,发现IFN-β的表达出现上调.同时,用新城疫病毒(Newcastle disease virus,NDV)感染GEF,发现MDA5 mRNA表达也出现了上调.本研究获得的gMDA5为国内首次报道证实的鹅MDA5基因,为进一步研究其在抗病毒中的作用奠定了基础.  相似文献   

17.
Interferon (IFN)-γ has been shown to be associated with immunity to Marek’s disease virus (MDV). The overall objective of this study was to investigate the causal relationship between IFN-γ and vaccine-conferred immunity against MDV in chickens. To this end, 3 small interfering RNAs (siRNAs) targeting chicken IFN-γ, which had previously been shown to reduce IFN-γ expression in vitro, and a control siRNA were selected to generate recombinant avian adeno-associated virus (rAAAV) expressing short-hairpin small interfering RNAs (shRNAs). An MDV challenge trial was then conducted: chickens were vaccinated with herpesvirus of turkey (HVT), administered the rAAAV expressing shRNA, and then challenged with MDV. Tumors were observed in 4 out of 10 birds that were vaccinated with HVT and challenged but did not receive any rAAAV, 5 out of 9 birds that were administered the rAAAV containing IFN-γ shRNA, and 2 out of 10 birds that were administered a control enhanced green fluorescent protein siRNA. There was no significant difference in MDV genome load in the feather follicle epithelium of the birds that were cotreated with the vaccine and the rAAAV compared with the vaccinated MDV-infected birds. These results suggest that AAAV-based vectors can be used for the delivery of shRNA into chicken cells. However, administration of the rAAAV expressing shRNA targeting chicken IFN-γ did not seem to fully abrogate vaccine-induced protection.  相似文献   

18.
The effects of selenium (Se) supplementation and source on equine immune function have not been extensively studied. This study examined the effects of oral Se supplementation and Se source on aspects of innate and adaptive immunity in horses. Fifteen horses were assigned to 1 of 3 groups (5 horses/group): control, inorganic Se (sodium selenite), organic Se (Se yeast). Immune function tests performed included: lymphocyte proliferation in response to mitogen concanavalin A, neutrophil phagocytosis, antibody production after rabies vaccination, relative cytokine gene expression in stimulated lymphocytes [interferon gamma (IFNγ), interleukin (IL)-2, IL-5, IL-10, tumor necrosis factor alpha (TNFα)], and neutrophils (IL-1, IL-6, IL-8, IL-12, TNFα). Plasma, red blood cell Se, and blood glutathione peroxidase activity were measured. Plasma and red blood cell Se were highest in horses in the organic Se group, compared with that of inorganic Se or control groups. Organic Se supplementation increased the relative lymphocyte expression of IL-5, compared with inorganic Se or no Se. Selenium supplementation increased relative neutrophil expression of IL-1 and IL-8. Other measures of immune function were unaffected. Dietary Se content and source appear to influence immune function in horses, including alterations in lymphocyte expression of IL-5, and neutrophil expression of IL-1 and IL-8.  相似文献   

19.
为探究褪黑素对镉致鸭大脑皮质毒性损伤的保护作用,本试验将16只20日龄高邮鸭随机分为4组,分别为对照组、褪黑素组、镉组、镉与褪黑素共处理组。对照组鸭自由采食饮水;褪黑素组鸭自由饮用含有0.2 mg·L-1褪黑素的水;镉组鸭自由采食拌有2 mg·kg-1氯化镉的饲料;镉与褪黑素共处理组鸭自由饮用含有0.2 mg·L-1褪黑素水的同时自由采食拌有2 mg·kg-1氯化镉的饲料。60 d后,剖检并采集鸭大脑皮质。比色法检测大脑皮质中丙二醛(MDA)和总抗氧化能力(T-AOC)的水平,ELISA法检测肿瘤坏死因子(TNF-α)、白介素-1β(IL-1β)的含量,免疫组化染色观察Nrf2核转位,免疫印迹法检测Nrf2、HO-1的蛋白表达。结果显示,与对照组相比,镉组鸭大脑皮质发生明显Nrf2核转位,T-AOC水平极显著降低(P<0.01),MDA、TNF-α、IL-1β含量和Nrf2、HO-1蛋白表达量极显著升高(P<0.01);与镉组相比,镉与褪黑素共处理组鸭大脑皮质Nrf2核转位减少,T-AOC水平显著升高(P<0.05),MDA、TNF-α、IL-1β含量和Nrf2、HO-1蛋白表达量显著或极显著降低(P<0.05或P<0.01)。综上,褪黑素对镉所致的鸭大脑皮质毒性损伤具有一定的保护作用。  相似文献   

20.
Pigs possess a microbiota in the upper respiratory tract that includes Haemophilus parasuis. Pigs are also considered the reservoir of influenza viruses and infection with this virus commonly results in increased impact of bacterial infections, including those by H. parasuis. However, the mechanisms involved in host innate responses towards H. parasuis and their implications in a co-infection with influenza virus are unknown. Therefore, the ability of a non-virulent H. parasuis serovar 3 (SW114) and a virulent serovar 5 (Nagasaki) strains to interact with porcine bone marrow dendritic cells (poBMDC) and their modulation in a co-infection with swine influenza virus (SwIV) H3N2 was examined. At 1 hour post infection (hpi), SW114 interaction with poBMDC was higher than that of Nagasaki, while at 8 hpi both strains showed similar levels of interaction. The co-infection with H3N2 SwIV and either SW114 or Nagasaki induced higher levels of IL-1β, TNF-α, IL-6, IL-12 and IL-10 compared to mock or H3N2 SwIV infection alone. Moreover, IL-12 and IFN-α secretion differentially increased in cells co-infected with H3N2 SwIV and Nagasaki. These results pave the way for understanding the differences in the interaction of non-virulent and virulent strains of H. parasuis with the swine immune system and their modulation in a viral co-infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号