首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 815 毫秒
1.
为了确定猪速激肽3基因(tachykinin3,TAC3)核心启动子区域,探索作用于该区域的转录因子对TAC3的调控作用,以猪耳组织DNA为模板,PCR扩增TAC3基因5'端不同长度缺失片段,并构建至p GL3-basic载体,转染猪卵巢颗粒细胞,通过双荧光素酶活性分析确定核心启动子区域,染色质免疫共沉淀技术(Ch IP)验证转录因子与基因启动子区的作用,构建转录因子超表达载体和小干扰RNA(siRNA)转染至猪卵巢颗粒细胞,qRT-PCR检测TAC3基因mRNA表达变化。结果显示:成功构建了TAC3基因5'端不同长度缺失片段,通过双荧光素酶报告系统分析发现,-1 310/-544区域为TAC3基因的核心启动子区,-2 486/-1 633区域可能存在负向调控元件,-1 310/-544区域可能存在正向调控元件。Ch IP检测发现转录因子C/EBPβ和YY1分别结合在TAC3基因的-653/-639和-873/-856区域;超表达C/EBPβ和YY1后,TAC3基因启动子活性显著升高(P0.05)、mRNA表达水平显著上调(P0.01);干扰C/EBPβ后,TAC3基因mRNA表达水平显著下调(P0.01);干扰YY1后,TAC3基因启动子活性显著降低(P0.05)。结果表明:转录因子C/EBPβ、YY1结合在TAC3基因的核心启动子区域,促进TAC3基因的转录活性。  相似文献   

2.
张冬杰  汪亮  刘洋  刘娣 《中国畜牧兽医》2019,46(9):2535-2542
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P<0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

3.
哺乳动物的CAAT增强子结合蛋白α(C/EBPα)、CAAT增强子结合蛋白β(C/EBPβ)、过氧化物酶体增殖物激活型受体γ(PPARγ)和胆固醇调节元件结合蛋白质1(SREBP1)是脂肪细胞分化调控的重要因子,鸟类脂肪细胞分化的分子调控网络目前还不清楚。本研究利用荧光素酶报告基因检测发现,C/EBPα、C/EBPβ和SREBP1过表达促进鸡PPARγ基因启动子活性(P0.05);C/EBPβ和SREBP1过表达抑制鸡C/EBPα基因启动子活性(P0.05);PPARγ过表达促进鸡FAS基因启动子的活性(P0.05),并抑制鸡LPL和AFABP基因启动子活性(P0.05),但对鸡C/EBPα基因启动子活性没有显著影响(P0.05)。本研究结果为进一步阐明鸡脂肪细胞分化的转录调控网络奠定了基础。  相似文献   

4.
旨在克隆测定牛肌原调节蛋白2基因(Myozenin2,MYOZ2)启动子的全长序列,进行活性区域分析,为牛MYOZ2基因功能和表达调控机理研究提供理论依据。通过5′RACE方法确定牛MYOZ2基因转录起始位点;采用PCR技术,以牛基因组为模板克隆MYOZ2基因启动子序列。利用在线软件分析启动子区域中可能包含的转录因子结合位点。依据分析结果重新设计引物,构建7个包含不同缺失片段的双荧光素酶报告基因载体,转染C2C12细胞系,利用双荧光素酶系统检测不同片段的启动子活性。结果表明,克隆得到牛MYOZ2基因启动子序列2 065bp,确定MYOZ2基因的转录起始位点;MYOZ2基因片段-84/+125荧光素酶相对活性极显著高于空载体pGL3-Basic(P0.01),MYOZ2基因片段-683/+125荧光素酶相对活性极显著高于基因片段-263/+125(P0.01)。MYOZ2基因启动子核心区域位于-84/+125bp,而且MEF2,SRF,MyoD,YY1等转录因子可能参与MYOZ2基因的转录调控。  相似文献   

5.
PCR扩增鸡L-FABP基因5′侧翼区约2kb的DNA片段,进行克隆并测序,构建了鸡L-FABP基因报告基因系列缺失载体,瞬时转染进入人肝癌细胞系,利用双荧光素酶报告基因系统测定了荧光素酶活性。在线分析软件发现鸡L-FABP基因启动子区存在HNF-1、SREBP-1、AP-1、C/EBP、Oct-1、TATA、CCAAT、GATA-1等调控元件,没有发现CpG岛。报告基因结果表明鸡L-FABP基因启动子-2 076bp/-20bp区域具有最强的启动子活性,-522bp/-20bp区域启动子活性最弱;C/EBPα可以显著的抑制鸡L-FABP基因的表达,这些结果为深入研究鸡L-FABP的表达调控机制奠定了基础。  相似文献   

6.
旨在初步探索DKK1基因转录调控机制,本研究利用启动子在线预测软件分析了该基因启动子区序列特征,根据Ensembl数据库已公布的猪DKK1基因的5′侧翼区序列,设计特异性PCR引物进行扩增、测序,进而构建启动子区不同缺失片段的pGL3-DKK1双荧光素酶表达载体,分别转染293T细胞和Hela细胞,并进行双荧光素酶报告基因检测。结果显示,DKK1基因启动子中含有1个TATA-box、多种转录因子和1个CpG岛;DKK1基因启动子对239T细胞具有偏好性,其中p-1 679/+292bp启动子片段活性最高,且显著高于其他缺失片段(P0.01)。-953~-1 679bp为核心启动子区域,-586~-953bp区域可能存在负调控元件,在-953~-1 679bp区域可能存在正调控元件。本试验通过对DKK1基因进行生物信息学分析并结合不同长度启动子片段双报告基因活性检测,证实了DKK1基因的5′侧翼区序列具有启动子转录活性,并初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究DKK1基因转录调控机制奠定基础。  相似文献   

7.
为了筛选调控民猪胸腺β4(Tβ4)基因转录的增强子,探究该基因的表达调控机制,本研究以民猪基因组DNA为模板,通过PCR扩增Tβ4基因启动子区系列截短片段,与pMD18-T载体连接构建克隆质粒;通过双酶切和连接反应将系列截短片段定向连入pGL3-basic载体构建双荧光素酶重组质粒;将重组质粒转染PK15细胞系,利用双荧光素酶检测系统测定重组质粒的相对荧光素酶活性;根据相对荧光素酶活性的高低进一步筛选Tβ4基因的启动子核心区域;利用3个在线软件预测核心区域内的转录因子结合位点,根据预测结果,使用重叠PCR定点缺失转录因子结合位点构建突变载体,在PK15细胞中以野生型载体为对照检测突变载体的相对荧光素酶活性。结果表明,试验成功构建了6个Tβ4基因系列截短的启动子片段,其中5个片段具有明显的活性。经过两轮的双荧光素酶活性检测发现,-155~-105 bp区域为民猪Tβ4基因的启动子核心区域,经生物信息学分析发现,该区域存在E2F-1、MYBAS1和ELK-1转录因子的结合位点。利用定点缺失构建了3个转录因子缺失的突变载体,经双荧光素酶检测发现仅有ELK-1结合位点的缺失,会造成启动子活性的显著下降(P0.05)。据此推测ELK-1是民猪Tβ4基因转录的正调控元件。  相似文献   

8.
张凤  李鑫  陈明新 《中国畜牧兽医》2019,46(6):1730-1738
本研究旨在对猪SEPW1基因的潜在启动子区进行克隆及转录活性分析,获得其核心启动子区域,并进一步分析转录因子SP1对SEPW1基因转录活性的影响,为探索SEPW1基因在猪肉质性状方面的功能奠定基础。利用实时荧光定量PCR检测SEPW1基因在大白猪各组织中的表达量,构建空间表达谱;通过PCR技术克隆得到6个逐级缺失的SEPW1基因启动子片段,构建6个双荧光素酶报告载体,通过检测各载体的双荧光素酶活性获得SEPW1基因的核心启动子区域;对核心启动子区进行生物信息学分析,发现潜在的SP1转录因子结合位点;通过过表达、抑制表达、定点突变及凝胶迁移试验(EMSA)确认SP1转录因子结合位点的存在及其对SEPW1基因转录活性的影响。结果显示,SEPW1基因在所检测的4月龄大白猪12个组织中均有表达,其中在腓肠肌及心脏中的表达量较高。双荧光素酶活性显示,猪SEPW1基因5'侧翼区-443~-231 bp为其核心启动子区,且-378~-306 bp存在1个潜在的SP1结合位点。过表达和抑制表达SP1基因结果显示,转录因子SP1能够促进SEPW1基因的转录;定点突变及EMSA试验确认,转录因子SP1可直接与SEPW1基因启动子区的SP1结合位点(-348~-339 bp)相结合。综合以上结果表明,转录因子SP1可直接靶向SEPW1基因的启动子区并促进SEPW1基因的转录。  相似文献   

9.
旨在通过分析猪StAR基因启动子活性区域,探究猪StAR基因的转录调控机制,从育种学角度为提高猪繁殖力提供新思路。本研究根据Ensembl数据库已公布的猪StAR基因的5′侧翼区序列,利用在线预测软件对该基因启动子区序列信息进行分析,以大白猪基因组DNA为模板,利用特异性引物,进行PCR扩增、测序,进而构建启动子区不同缺失片段的pGL3-StAR双荧光素酶表达载体,转染293T细胞并进行活性检测。结果显示,StAR基因5′侧翼区不含有典型的TATA-box和CpG岛;成功克隆了10个含有不同长度的启动子片段,并构建了各片段与表达载体的重组质粒;转染293T细胞后经双荧光素酶活性检测发现,大白猪StAR基因5′侧翼区存在着核心启动子,其中-196~+127bp这一区域活性值最高,且显著高于其他缺失片段(P0.01),表明在+127~-196bp的区域内存在重要的正调控因素,外显子1对启动子活性起重要的调控作用。-41~-196bp为核心启动子区域,该区域存在着关键的正调控元件,包含GATA2、GATA4、SP1、ZNF263、Hoxa9、KLF16和ZNF740转录因子结合位点。本试验通过对StAR基因进行生物信息学分析,并结合不同长度启动子片段双报告基因活性检测,证实了StAR基因的5′侧翼区序列具有启动子转录活性。初步确定了该基因的启动子区域,找到了启动子的核心区域和主要调控区域,为进一步研究StAR基因转录调控机制提供理论依据。  相似文献   

10.
《畜牧与兽医》2015,(6):54-59
利用在线预测软件对牛C4A基因的5'侧翼区序列进行生物信息学分析,成功构建了一系列表达载体,利用双荧光素酶报告基因检测系统分析牛C4A基因的5'侧翼区启动活性。分别通过定点突变技术构建突变质粒,研究调控C4基本表达和诱导表达的转录因子结合位点。利用EMSA技术验证转录因子在研究细胞系中存在与否。结果显示,C4A基因启动子序列转录起始位点上游169 bp为报告基因荧光值最高的片段,即为启动子核心区;其中SP1(-169~-158)、E-box(-122~-117)和AP-1(-80~-71)是调控C4基本表达的主要转录因子结合位点,且3个转录因子在Hep G2细胞系中真实存在。  相似文献   

11.
为进一步分析L-FABP启动子区域中的C/EBPα结合位点以确定其在L-FABP转录中的调控作用。本研究采用定点突变方法将L-FABP启动子区域中的C/EBPα结合位点进行有效突变。结果显示,C/EBPα外源过表达可以抑制L-FABP启动子活性,突变L-FABP启动子区域中C/EBPα结合位点后L-FABP的启动子活性明显升高。这些结果表明,鸡L-FABP基因受到C/EBPα基因负调控作用,且C/EBPα很可能通过与该位点结合参与L-FABP的转录调控,为进一步研究C/EBPα在L-FABP基因转录调控中的作用提供重要依据。  相似文献   

12.
通过构建猪核转录因子C/EBPβ编码区真核表达体pEGFP-N1-C/EBPβ,将猪C/EBPβ异位表达于小鼠成肌细胞C2C12细胞中,为进一步研究C/EBPβ在猪脂肪发育中的调控机制奠定基础。本试验利用RT-PCR扩增C/EBPβ编码区序列并测序,提交GenBank;并将其克隆至真核表达载体pEGFP-N1,通过双酶切和测序鉴定重组质粒。将重组表达体pEGFP-N1-C/EBPβ导入C2C12细胞,荧光显微镜下观察C/EBPβ在细胞中的定位,半定量RT-PCR和Western blot检测C/EBPβ在细胞中的表达情况。本试验成功克隆测序了猪C/EBPβ基因编码区序列,并首次上传到GenBank;成功构建猪C/EBPβ真核表达体pEGFP-N1-C/EBPβ,并将其异位表达。结果表明:猪C/EBPβ在脂肪组织中表达量丰富,心肌和背最长肌表达微量,并且正确插入真核表达载体pEGFP-N1,荧光显微镜下观察重组体组主要集中在细胞核;而C/EBPβ基因和蛋白在转染重组体C2C12细胞中均有表达。本研究为提高猪肉肌内脂肪含量方面的研究提供新的思路。  相似文献   

13.
本研究旨在确定徐淮山羊c-Myc基因启动子区域,找出该基因启动子的核心调控区,初步探讨c-Myc基因的表达调控机制。根据UCSC基因组数据库已公布的绵羊c-Myc基因的启动子序列,设计特异性PCR引物扩增c-Myc基因的一系列启动子缺失片段,定向克隆至pEGFP-N1和PGL3-c-Myc,分别转染gFF、COS7及P19细胞,并进行TSA和NFAT1诱导,同时对-402~-249bp区域的转录因子SP1结合位点进行定点突变,最后进行双荧光报告基因活性检测。结果表明,徐淮山羊c-Myc基因5′侧翼区-1 334~+1bp区域的启动子活性最强,-402~+1bp区域为c-Myc基因启动子基本活性区域。进一步研究发现,-1 334~-971bp、-587~-147bp区域存在正调控元件,-1 976~-1 334bp、-971~-587bp区域存在负调控元件。TSA和NFAT1均能增强cMyc启动子的活性,SP1结合位点定点突变后,启动子活性降低。本试验通过构建包含c-Myc基因启动子不同片段的重组报告基因载体并比较其转录活性,确定了c-Myc基因启动子的核心区域,发现转录因子SP1是c-Myc基因启动子核心区域的调控元件,为进一步研究c-Myc基因的表达调控机制奠定了基础。  相似文献   

14.
旨在筛选调控山羊毛色基因PMEL的启动子活性区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为彩色山羊的育种和改良提供思路。以山羊基因组DNA为模板,PCR扩增PMEL基因不同长度的启动子缺失片段,定向克隆至pGL3-basic载体,将重组质粒转染到293T和A375细胞,通过双荧光素酶检测系统测定相对荧光素酶活性值;利用生物信息学方法对PMEL基因核心启动子区的转录因子结合位点进行预测,随后利用重叠延伸PCR分别对pGL3-327质粒上预测的转录因子结合位点进行点突变并构建突变载体,利用双荧光素酶检测系统进行活性验证。结果显示,本研究成功构建了7个不同长度的启动子片段,其中6个片段具有明显的启动子活性。经过双荧光素酶活性检测发现山羊PMEL基因-251/+76区域为核心启动子区域。通过不同长度的启动子片段的活性比较发现,-251/-62区域的缺失造成启动子活性从最高到消失,表明该区域对山羊PMEL基因转录调控有重要影响,生物信息学分析发现该区域存在5个转录因子结合位点,利用点突变构建了5个突变载体,经过双荧光素酶检测发现5个突变载体的活性均显著下降。提示这5个转录因子是山羊PMEL基因转录的正调控元件。本研究确定了山羊PMEL基因启动子核心区域为-251/+76,NF-1(-206/-197)、Sp1(-186/-174)、Sp1(-151/-139)、CREB(-91/-82)和Sp1(-82/-71)结合位点为山羊PMEL基因转录的正调控元件。  相似文献   

15.
旨在分析鹅MyoG基因启动子活性区域和转录因子,探究该基因的转录调控机制。本研究首先通过PCR扩增泰州鹅MyoG基因5'侧翼区序列1 245 bp并对其进行测序和生物信息学分析,其次,构建4个不同缺失片段的双荧光素酶报告载体,转染C2C12细胞系。进一步利用在线软件预测核心启动子区关键转录因子,对转录因子结合位点HNF4(-521~-503 bp)、USF (-379~-370 bp)和E2(-296~-281 bp)进行定点突变并构建突变报告基因载体,在C2C12细胞系内初步鉴定MyoG基因核心转录调控因子。最后,采集70日龄泰州鹅胸肌、腿肌、心、肝、脾、肺、肾和下丘脑组织样,利用荧光定量PCR检测MyoG基因和核心转录调控因子的组织表达谱。结果表明,扩增得到的鹅MyoG基因5'侧翼区序列包含启动子元件;利用双荧光素酶报告载体检测到鹅MyoG基因启动子区-624~-154 bp区域存在关键顺式调控元件;结合定点突变技术初步鉴定USF是鹅MyoG基因核心转录调控元件。组织表达谱研究进一步表明,MyoGUSF基因在鹅8个不同组织中均有表达,且在胸肌、腿肌和心组织中共同高表达(P<0.01)。鹅MyoG基因5'侧翼区具有启动子转录活性,-624~+37 bp是核心启动子区,USF是MyoG核心转录调控因子。试验结果为探究MyoG基因在鹅肌肉发育过程的调控机制提供理论依据。  相似文献   

16.
本研究旨在对猪SEPW1基因的潜在启动子区进行克隆及转录活性分析,获得其核心启动子区域,并进一步分析转录因子SP1对SEPW1基因转录活性的影响,为探索SEPW1基因在猪肉质性状方面的功能奠定基础。利用实时荧光定量PCR检测SEPW1基因在大白猪各组织中的表达量,构建空间表达谱;通过PCR技术克隆得到6个逐级缺失的SEPW1基因启动子片段,构建6个双荧光素酶报告载体,通过检测各载体的双荧光素酶活性获得SEPW1基因的核心启动子区域;对核心启动子区进行生物信息学分析,发现潜在的SP1转录因子结合位点;通过过表达、抑制表达、定点突变及凝胶迁移试验(EMSA)确认SP1转录因子结合位点的存在及其对SEPW1基因转录活性的影响。结果显示,SEPW1基因在所检测的4月龄大白猪12个组织中均有表达,其中在腓肠肌及心脏中的表达量较高。双荧光素酶活性显示,猪SEPW1基因5′侧翼区-443~-231 bp为其核心启动子区,且-378~-306 bp存在1个潜在的SP1结合位点。过表达和抑制表达SP1基因结果显示,转录因子SP1能够促进SEPW1基因的转录;定点突变及EMSA试验确认,转录因子SP1可直接与SEPW1基因启动子区的SP1结合位点(-348~-339 bp)相结合。综合以上结果表明,转录因子SP1可直接靶向SEPW1基因的启动子区并促进SEPW1基因的转录。  相似文献   

17.
甘露聚糖结合凝集素C(mannose binding lectin C,MBL-C)是C型(Ca2+依赖型)凝集素超家族的成员,其作为一种急性期蛋白,具有抗细菌感染的功能,参与机体的天然免疫反应。为鉴定出结合在MBL2基因启动子区(1 009 bp)的重要转录因子,探寻该基因的转录调控机制,本研究选取海南黑山羊MBL2基因的启动子序列1 009 bp,采用DNA重组技术克隆6个转录起始位点上游1 009 bp的启动子5'端侧翼缺失序列,克隆片段经双酶切后连接至pGL3-Basic载体。重组质粒转染至293T细胞中,结合双荧光素酶活性检测系统筛选MBL2基因的核心启动子区域。通过在线生物信息学软件预测山羊MBL2基因的核心启动子区域的转录因子结合位点,利用点突变技术构建转录因子结合位点缺失的载体,转染293T细胞后结合双荧光素酶活性检测系统分析其转录活性。结果表明,海南黑山羊MBL2基因的核心启动子区域位于转录起始位点上游-304~-45 bp范围内,在线软件分析该区域存在RELA、NF-κB2、MZF1等3种转录因子结合位点。双荧光素酶报告分析结果表明,RELA和NF-κB2的结合位点缺失后均使山羊MBL2基因的转录活性极显著下降(P < 0.01)。结果提示,RELA和NF-κB2对山羊MBL2基因的转录活性可能具有重要的正调控作用。该研究为进一步探寻海南黑山羊MBL2基因的功能提供理论依据。  相似文献   

18.
通过分析调控北极狐毛色基因TYRP1启动子核心区域及转录因子,为探究该基因的表达调控机制提供理论依据,并为狐狸毛皮品质分子育种和彩色毛皮新材料的创制提供思路。通过基因组测序技术获得了北极狐TYRP1基因启动子序列,并利用生物信息学方法对北极狐TYRP1基因核心启动子区域和转录因子结合位点进行预测;以北极狐基因组DNA为模板,PCR扩增北极狐TYRP1基因不同长度的启动子缺失片段克隆至pGL3-Basic载体,将重组质粒瞬时转染到A375和293T细胞,利用双荧光素酶基因检测仪进行活性验证。结果表明,成功构建了9个含有不同长度启动子片段的重组质粒,经双荧光素酶活性检测发现北极狐TYRP1基因-699/+35区域为核心启动子区域,-699/-93区域存在着TYRP1基因正调控元件。生物信息学预测分析发现该区域存在4个转录因子结合位点;利用重叠延伸PCR技术成功构建了4个突变载体,经双荧光素酶活性检测发现4个突变载体活性均显著下降(P0.05),表明这4个转录因子是北极狐TYRP1基因转录调控的正调控元件。本研究确定了北极狐TYRP1基因启动子核心区域-699/+35,Sp1(-656/-646)、CREB(-598/-589)、Sp1(-539/-530)和Sp1(-163/-154)为北极狐TYRP1基因转录的正调控元件。  相似文献   

19.
旨在研究山羊卵巢维持基因FOXL2启动子活性以及探究该基因的调控机理。从NCBI数据库调取FOXL2基因启动子序列,用生物信息学软件对其核心启动子和转录因子进行预测分析。使用PCR技术克隆FOXL2基因启动子序列,并构建一系列缺失载体,瞬时转染293T和A375细胞,利用双荧光素酶基因检测仪测定相对荧光素酶活性值。结果表明,该基因启动子区域存在两个典型的CpG岛,分别位于(-920/+51(972bp))和(+125/+555(430bp))区域;经KpnⅠ和HindⅢ双酶切鉴定表明,重组载体质粒构建正确;在细胞中插入不同长度的FOXL2基因启动子片段,随着启动子5′端截短,荧光素酶转录活性先升高再逐渐降低。(-934/+324)区域存在转录活性,(-32/+324)区段包含了转录的基本元件;(-934/-456)区域在转录过程中对FOXL2基因起负调控作用,(-456/-192)区域为正调控区域。  相似文献   

20.
猪THRSP基因5'侧翼区序列转录调控活性的鉴定   总被引:2,自引:1,他引:1  
本研究旨在对猪THRSP基因5′调控区TP526序列进行转录调控活性的鉴定,以鉴别THRSP基因调控区的功能。提取猪耳组织基因组,利用PCR技术克隆THRSP基因5′调控区TP526序列,将其插入荧光素酶报告载体中(pGL3-Basic),构建猪THRSP基因5′调控区TP526序列调控的荧光素酶报告载体(pGL3-TP526/promot-er),经PCR鉴定后,转染293T细胞,利用双报告基因检测TP526序列的启动子活性。结果显示,pGL3-TP526/promoter调控的表达载体,其萤火虫与海肾荧光素酶荧光强度之比(1.816 2±0.253 3)显著高于pGL3-Basic(0.126 7±0.020 3),呈高效表达(P<0.01)。THRSP基因5′调控区TP526序列具有启动子调控活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号