首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
本实验研究根据乙酰甲胺磷在水稻上的登记的GAP数据进行田间残留试验,对不同间隔期水稻糙米乙酰甲胺磷及其代谢物甲胺磷进行了残留量检测。建立了采用气相色谱的残留量检测的分析方法,乙酰甲胺磷与甲胺磷最低检出浓度0. 01mg/kg。乙酰甲胺磷糙米回收率在82. 4%~89. 1%,相对标准偏差为6. 61%~9. 76%;甲胺磷糙米回收率在78. 7%~91. 8%,相对标准偏差为5. 72%~14. 1%。试验研究结果表明:东北粳稻安全间隔期设为45d以上的,乙酰甲胺磷和甲胺磷的残留量均低于目前我国在水稻上的残留限量1. 0mg/kg和0. 5mg/kg的标准,能够满足水稻生产的质量安全。  相似文献   

2.
进行了室外大田残留试验,监测了稻田水体中丙炔 口 恶 草酮的消解动态,结果表明,丙炔 口 恶 草酮在稻田水中的消解半衰期为1.2 d。通过室内水解试验及模拟自然光降解试验,研究了丙炔 口 恶 草 酮在稻田水与不同pH缓冲溶液中的水解及光降解规律。在室内25℃避光的田水与pH 5.0 和7.1的缓冲液中,丙炔 口 恶 草酮的降解半衰期均大于90 d,而在pH 9.6的缓冲溶液中的半衰期为3.7 d。在室内25℃及在 4 000±500 lx氙灯光照下,其在田水和pH 7.1、9.6的缓冲溶液中的降解半衰期分别为11.8、13.2和9.8 h。光对水解的显著影响可通过半衰期的长短变化来揭示,表明光照是该药剂在室外田水中迅速降解的一个重要环境因素。  相似文献   

3.
作物和土壤中乙酰甲胺磷及其代谢物甲胺磷消解研究   总被引:5,自引:1,他引:4  
为评价乙酰甲胺磷在作物上使用的安全性,采用气相色谱法研究了不同气候条件(亚热带和暖温带)下的4种作物(甘蓝、萝卜、水稻、柑桔)和8个土壤样品(4种作物各自在两个试验地点的土壤)中乙酰甲胺磷及其代谢物甲胺磷的消解情况。结果表明:乙酰甲胺磷在作物和土壤中均可代谢产生甲胺磷,作物中的2 h甲胺磷代谢产率主要由作物种类决定。作物中乙酰甲胺磷的消解半衰期为3.1~13.5 d,甲胺磷为2.7~12.8 d;土壤中乙酰甲胺磷的半衰期为1.4~6.4 d,甲胺磷为4.5~10.7 d。土壤pH值对乙酰甲胺磷的消解影响显著,其在碱性土壤中消解较快。具有较高净辐射的气候条件会促进乙酰甲胺磷及甲胺磷在作物中的消解,因此种植在暖温带气候条件下的作物上使用乙酰甲胺磷较种植在亚热带气候条件下的具有更高的甲胺磷残留风险。乙酰甲胺磷施用在叶菜类蔬菜上可能会有较高的甲胺磷残留风险,建议叶菜类蔬菜应谨慎使用乙酰甲胺磷。  相似文献   

4.
四氟醚唑在草莓和土壤中的残留动态研究   总被引:6,自引:1,他引:5  
研究了杀菌剂四氟醚唑的残留分析方法及其在草莓和土壤中的消解动态和最终残留量。草莓经丙酮提取抽滤后,加入饱和醋酸铅和氯化钠水溶液利用共沉淀法除去杂质,再经液液分配及活性炭柱净化、浓缩、定容后,用带ECD检测器的气相色谱进行测定。四氟醚唑的最低检出量为0.03 ng,在草莓和土壤中的最低检出浓度均为0.02 mg/kg,在草莓和土壤中的平均回收率为95.9% ~97.5%,变异系数1.5% ~2.8%,符合残留分析要求。用该方法测定了四氟醚唑在草莓和土壤中的消解动态以及最终残留量,结果表明:四氟醚唑在草莓上的降解速度较快,半衰期为4.2 d;在土壤中降解速度稍慢,半衰期为15.4 d,施药后7 d四氟醚唑的消解达到80%以上。  相似文献   

5.
采用气相色谱仪,建立了水中乙羧氟草醚残留量的分析检测方法,并在室内研究了其在不同温度、不同pH值缓冲溶液中的降解动态。结果表明:乙羧氟草醚在不同温度和不同pH值条件下的降解均符合典型的一级动力学规律。在同一温度下,其水解速率常数随着pH的升高而增大;在同一pH值条件下,温度升高,降解速率加快。在25℃时,乙羧氟草醚在pH值分别为9、7、5的缓冲溶液中的降解半衰期分别为85.6 min、144.4 h和12.2 d;在50℃时,其在相应缓冲溶液中的降解半衰期分别为23.3 min、13.4 h和10.7 d。研究表明乙羧氟草醚为易水解农药。  相似文献   

6.
建立了噻吩磺隆在土壤、玉米和玉米植株中的超声提取、固相萃取净化和高效液相色谱-质谱联用 残留检测方法,测定了在田间施药条件下噻吩磺隆在土壤中的消解动态及其在土壤、玉米和玉米植株中的最终残留。土壤、玉米和玉米植株样品经乙腈-磷酸盐缓冲溶液(pH 7.8)浸泡、涡旋并超声提取后,经固相萃取柱净化,用反相高效液相色谱-质谱检测。结果表明,噻吩磺隆在该方 法下的最小检出量为0.2 ng,在10倍浓缩倍数条件下的最低检出浓度为2 μg/kg,定量限为6 μg/kg,平均添加 回收率为77.9% ~100.4%,变异系数在1.6% ~6.5%之间。田间试验结果表明:噻吩磺隆在土壤中的半衰期分别为0.92~1.23 d;按推荐剂量施药,距施药时间40 d后和玉米收获时,在土壤、玉米和玉米植株中均未检出噻吩磺隆。  相似文献   

7.
采用气相色谱-火焰光度检测器(GC-FPD)测定了噻唑膦在黄瓜和土壤样品中的消解动态及最终残留。黄瓜和土壤样品用乙腈提取、乙酸乙酯定容、GC-FPD检测。当噻唑膦在黄瓜和土壤中的添加浓度为0. 01~0. 5mg/kg时,回收率为82. 0%~107. 8%之间,相对标准偏差(RSD)为5. 6%~12. 3%;噻唑膦的最小检出量为1. 0×10-14g,黄瓜和土壤中的最低检测浓度为0. 01mg/kg。消解动态试验结果显示,噻唑膦在黄瓜和土壤的消解动态规律均符合一级动力学方程,其半衰期分别为2. 17~3. 81 d和5. 37~9. 76 d;最终残留试验结果表明,黄瓜中噻唑膦残留量最大值为0. 066mg/kg,低于我国规定的残留限量值0. 2mg/kg,建议在黄瓜地使用5%噻唑膦可溶液剂时,施药剂量为1 500 g. a. i/ha,施药1次,收获期黄瓜安全。  相似文献   

8.
为评价井冈霉素在杨梅中的消解动态和最终残留,2016年开展了6%井冈·嘧苷素水剂在杨梅上的残留田间试验,以期为井冈霉素在杨梅上的合理使用和制定最终残留限量提供参考。建立了液相色谱串联质谱法(LC-MS/MS)测定杨梅中井冈霉素A的残留量的分析方法,样品经甲醇涡旋提取,过有机滤膜,LC-MS/MS检测。当井冈霉素A在杨梅中的添加浓度为0.005、0.05、0.25mg/kg时,平均回收率为81.9%~102.5%,相对标准偏差(RSD)为3.4%~4.7%,符合农药残留试验要求。消解动态试验结果显示,井冈霉素A在杨梅中的消解动态规律符合一级动力学方程,半衰期为1.5~4.1d,属易降解农药。最终残留试验表明,6%井冈·嘧苷素水剂按有效成分300和450mg/kg,施药3次和4次,,末次施药后3、5、7、14d,杨梅中井冈霉素A最终残留量分别为0.009~1.170mg/kg、0.005~0.711mg/kg、0.005~0.470mg/kg、0.005~0.061mg/kg。建议在杨梅上使用6%井冈·嘧苷素水剂时,有效成分用药量100~300mg/kg,最多施药3次,安全间隔期7d。  相似文献   

9.
次氯酸钠去除水和小白菜中毒死蜱残留的研究   总被引:2,自引:0,他引:2  
研究了不同pH值下,不同浓度次氯酸钠溶液对水中毒死蜱的降解作用以及对小白菜中毒死蜱残留的去除效果。结果表明,在较低pH或较高浓度下,次氯酸钠能有效地降解水中的毒死蜱,如在pH 5.0的条件下,用浓度分别为20和100 mg/L的次氯酸钠溶液处理5 min,水中毒死蜱的降解率分别为97.4%和100%。而100和500 mg/L的次氯酸钠溶液对小白菜中残留毒死蜱的去除率为34.4%~70.6%。  相似文献   

10.
采用气相色谱-电子捕获检测器(GC-ECD)测定了己唑醇在田水、土壤、水稻植株和糙米、稻壳样品中的消解动态及最终残留。田水样品用二氯甲烷萃取,土壤、水稻植株、糙米和稻壳样品用甲醇提取,提取液经柱层析净化、GC-ECD检测。当己唑醇在田水中的添加浓度为0.005~1.0mg/kg时,其回收率为94.38%~97.28%之间,相对标准偏差(RSD)为1.93%~2.87%,在土壤、植株、糙米和稻壳中的添加浓度为0.02~2.0mg/kg时,其平均回收率在86.20%~96.30%之间,RSD为2.25%~6.39%;己唑醇的最小检出量为2.0×10~(-11)g,在田水中的最低检测浓度为0.005mg/kg,土壤、水稻植株、糙米和稻壳中的最低检测浓度为0.02mg/kg。消解动态试验结果显示,己唑醇在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期分别为4.12~7.33d,11.77~23.18d和2.89~7.17d;最终残留试验结果表明,药后45d糙米中的己唑醇最终残留量为0.085 7mg/kg,低于我国规定的最大残留限量值0.1mg/kg,建议在稻田上使用50%己唑醇可湿性粉剂时,施药剂量为75~112.5g.a.i/ha,施药2~3次,安全间隔期为45 d。  相似文献   

11.
建立了气相色谱-质谱(GC-MS)同时测定水体和沉积物中39种农药残留的检测方法。水体样品由乙酸乙酯萃取,无水硫酸钠干燥;沉积物样品经乙腈超声提取,采用N-丙基乙二胺(PSA)和石墨化碳黑(GCB)净化,选择离子监测模式(SIM)进行检测,外标法定量。结果表明:39种农药在10~1 000 μg/L范围内线性关系良好,决定系数(R2)均大于0.9950。空白水样在0.25、0.5、5.0 μg/L 3个添加水平下的平均回收率在72%~111%之间,相对标准偏差(RSD,n = 5) 在1.1%~10%之间,检出限(LOD)为0.02~0.06 μg/L,定量限(LOQ)为0.04~0.18 μg/L;空白沉积物在5.0、20.0、100.0 μg/kg 3个添加水平下的回收率在65%~119%之间,RSD (n = 5)在2.1%~12%之间,LOD为0.7~1.5 μg/kg,LOQ为2.1~4.3 μg/kg。该方法灵敏、准确,结果可靠,可满足水体和沉积物中39种目标农药的残留分析要求。  相似文献   

12.
建立了水-沉积物系统中13种拟除虫菊酯类农药的残留分析方法。样品采用固相萃取和加压流体萃取法分别作为水和沉积物的前处理方法,利用气相色谱-质谱(GC-MS)在选择离子扫描模式下进行检测,内标法定量。结果表明,13种拟除虫菊酯类农药在一定浓度范围内线性关系良好 (R2 ≥ 0.995);水中添加水平在0.50~50 μg/L范围内时回收率为83%~104%,RSD (n = 6) 为0.73%~6.8%;沉积物中添加水平在5.0~50 μg/kg范围内时回收率为73%~92%,RSD (n = 6) 为0.63%~5.3%。方法的检出限为1.0~7.0 μg/L,13种拟除虫菊酯类农药在水中的检出限 (LOD) 为0.50 μg/L,在沉积物中的定量限(LOQ)为5.0 μg/kg。该方法灵敏度高、操作简便、重现性好,适用于水-沉积物系统中拟除虫菊酯类农药的快速检测和确证。  相似文献   

13.
固相萃取-气相色谱-质谱法测定韭菜中16种农药残留   总被引:4,自引:0,他引:4       下载免费PDF全文
建立了韭菜中16种农药的多残留分析方法。韭菜样本经微波炉加热处理,乙腈提取,新型固相萃取柱Cleanert TPT净化,以气相色谱-质谱-选择离子监测模式测定。结果表明:微波处理、固相萃取净化可以有效去除基质干扰,16种农药在0.02~2 mg/L范围内线性关系良好;在0.01和0.5 mg/kg两个添加水平下的平均回收率分别在84.6%~124.2%和92.4%~98.5%之间,相对标准偏差 (RSD) 均小于20%;16种农药的检出限(LOD)在1~6 μ g/kg范围内。  相似文献   

14.
采用乙腈和水(70:5,V/V)为溶剂提取水稻中乙酰甲胺磷、甲胺磷,其他采用NY/T761—2008方法,气相色谱法(FPD检测器)进行测定2种农药在糙米中的残留,其添加回收率为78.7%-91.8%,变异系数为5.72%-14.1%,乙酰甲胺磷的最低检出限为0.005mg/kg,甲胺磷的最低检出限为0.01mg/kg。  相似文献   

15.
QuEChERS-气相色谱-串联质谱法同时测定饲草中10种农药残留   总被引:1,自引:0,他引:1  
建立了同时测定饲草中敌敌畏、乙酰甲胺磷、乐果、莠去津、乙草胺、马拉硫磷、倍硫磷、毒死蜱、氯氰菊酯和溴氰菊酯10种农药残留的QuEChERS/气相色谱-串联质谱(GC-MS/MS)方法。样品经饱和氯化钠溶液浸泡10~15 min、乙腈匀浆提取1 min,上清液以无水MgSO4、N-丙基乙二胺(PSA)、C18和石墨化碳黑(GCB)(质量比30:10:10:1)为吸附剂进行基质分散萃取净化,浓缩后用乙酸乙酯定容,通过HB-5MS气相色谱柱(30 m×250 μm,0.25 μm)分离,采用串联质谱在多反应监测模式(MRM)下检测分析。结果表明:在1~200 μg/L范围内,10种农药的进样质量浓度与其对应的峰面积间呈良好的线性关系,相关系数均大于0.99,该方法检出限(LOD)为0.001 5~0.015,定量限(LOQ)为0.005~0.05 mg/kg。在0.05、0.2和1.0 mg/kg 3个添加水平下,10种农药在饲草中的平均回收率为75%~110%,相对标准偏差(RSD)为1.7%~11.6%。利用该方法对山东省100批次饲草产品中的农药残留进行检测,共检出8种农药,其中毒死蜱的检出率较高,其在青贮料和干草料中的残留量分别在0.002~0.447和0.002~3.502 mg/kg之间,其他农药的检出率则较低,在0.027~0.428 mg/kg之间。参照国内外最大允许残留限量(MRL)值,毒死蜱、乐果、乙草胺、马拉硫磷、氯氰菊酯和溴氰菊酯在饲草中的残留水平是安全的;而莠去津和倍硫磷尚未规定其在饲草中的MRL值。该方法简单、快速、灵敏、准确,能够满足大批量饲草中农药残留的检测需要。  相似文献   

16.
建立了土壤和水体中20种除草剂残留的气相色谱-质谱(GC-MS)分析方法。土壤样本通过乙腈提取,Florisil固相萃取柱净化,V(石油醚):V(乙酸乙酯)=9:1洗脱,GC-MS测定;水体样本用C18固相萃取柱进行富集和净化,以V(甲醇):V(乙酸乙酯)=1:1洗脱,GC-MS测定。20种除草剂在土壤和水体中的平均添加回收率分别为72%~109%和77%~113%,相对标准偏差(RSD)分别在0.15%~16.5%和0.45%~16.3%之间,方法定量限(LOQ)在土壤中为0.01 mg/kg,在水体中为0.1 μg/L。用所建方法可同时检测土壤和水中20种常用除草剂,方法净化效果好、灵敏度高、重现性好、简便快速。  相似文献   

17.
建立了采用高效液相色谱-二极管阵列检测器(HPLC-DAD)测定水、土壤和黄瓜中噻唑锌残留的方法。在碱性条件下先将噻唑锌转化为噻二唑(AMT),采用外标法通过测定噻二唑的量来进行噻唑锌的定量分析。样品在40℃恒温振荡条件下,依次经Na2S转化及乙腈提取;过滤后调节混合液pH值至3,经乙酸乙酯液-液分配后,用HPLC-DAD及BDS Hypersil-C18色谱柱,以V(乙腈):V(0.1%乙酸)=10:90为流动相,在313 nm波长下测定样品中的噻唑锌残留。结果表明:噻二唑在0.10~10 mg/L、噻唑锌在0.20~5.0 mg/L的质量浓度范围内线性关系良好(R2 > 0.999 5),噻二唑的检出限(LOD)为0.05 mg/L。在0.2、1和5 mg/L添加水平下,噻唑锌在水中的平均回收率为100%~110%,相对标准偏差(RSD)为0.90%~6.4%;在0.05、0.5和5 mg/kg添加水平下,噻唑锌在土壤中的平均回收率为81%~98%,RSD为0.70%~2.8%;在0.05、0.5和2 mg/kg添加水平下,噻唑锌在黄瓜中的平均回收率为95%~102%,RSD为1.3%~4.2%。噻唑锌在水、黄瓜和土壤中的定量限(LOQ)分别为0.03 mg/L、0.05 mg/kg和0.05 mg/kg。本方法简单、准确、可靠,能满足农药残留分析的要求。  相似文献   

18.
基于分散固相萃取与气相色谱-串联质谱建立了快速检测西瓜和黄瓜中吡唑萘菌胺及其代谢物残留的分析方法。样品经乙腈提取,N-丙基乙二胺 (PSA) 和C18净化,气相色谱-串联质谱 (GC-MS/MS) 测定,多反应检测模式 (MRM) 分析,内标法定量。考察了提取溶剂及吸附剂种类对分析结果的影响,优化了气相色谱-质谱条件。结果表明:在1~500 μg/L范围内,吡唑萘菌胺及其代谢物的质量浓度与对应的峰面积间均呈良好的线性关系,相关系数 (r) 为0.994 3~0.999 9。在0.01、0.1和1 mg/kg 3个添加水平下,吡唑萘菌胺及其代谢物在西瓜中的平均回收率为70%~105%,相对标准偏差 (RSD,n = 5) 为3.4%~13%;在黄瓜中的添加回收率为82%~104%,相对标准偏差 (RSD,n = 5) 为1.3%~9.3%。吡唑萘菌胺及其代谢物的定量限 (LOQ,S/N = 10) 为0.3~0.6 μg/kg,检出限 (LOD,S/N = 3) 为0.1~0.2 ng。该方法简单、高效、快速,满足残留分析的要求,适用于西瓜、黄瓜中吡唑萘菌胺及其代谢物残留的快速检测。  相似文献   

19.
气相色谱-串联质谱法测定莲雾中的灭蚁灵和哒螨灵残留   总被引:2,自引:1,他引:1  
建立了同时测定莲雾Syzygium samarangense(Bl.)Merr.et Perry中灭蚁灵和哒螨灵残留的气相色谱-串联质谱(GC-MS/MS)分析方法。样品经乙腈匀浆提取,石墨化碳黑/氨基混合型固相萃取柱净化,GC-MS/MS检测。采用所建立的方法,在0.01~0.5 mg/kg下进行添加回收试验,2种农药的平均回收率在89%~102%之间,相对标准差为1.7%~5.2%(n=5);方法的线性范围为0.01~0.5 mg/L,决定系数(R2)0.99;对灭蚁灵和哒螨灵的定量限均为0.005 mg/kg。所建方法能满足莲雾中灭蚁灵和哒螨灵残留同时检测的要求。  相似文献   

20.
建立了韭菜中三唑酮和腐霉利同时测定的气相色谱-串联质谱(gas chromatographytandem mass spectrometry,GC-MS/MS)分析方法。样品匀浆后用乙腈提取,经盐析和利用石墨化碳黑/氨基混合型固相萃取柱进行净化,经GC-MS/MS检测,外标法定量。结果表明:在0.01~0.5mg/kg添加水平下,三唑酮和腐霉利回收率在84%~98%之间,相对标准偏差在2.0%~7.3%(n=5)之间;三唑酮和腐霉利的定量限分别为0.005和0.001mg/kg,可满足韭菜中三唑酮和腐霉利残留检测的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号