首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将纳米镍催化剂首次应用于α-蒎烯的氢化反应中,与其他催化剂相比,本实验条件下原料转化率高于骨架镍,产物顺式蒎烷选择性高于Pd/C。对影响纳米镍催化下α-蒎烯加氢反应制备顺式蒎烷的因素进行了讨论,得出适宜的反应条件:温度90℃,压力4.0MPa,催化剂用量1.0%(质量分数),原料α-蒎烯转化率达100%,产物顺式蒎烷选择性94.3%。  相似文献   

2.
以廉价金属硫酸盐为催化剂,在γ-戊内酯/水复合溶剂中催化半纤维素定向转化制备糠醛,糠醛得率高达50.2%,半纤维素液化转化率达95.5%。在γ-戊内酯/水复合溶剂中,以金属硫酸盐为催化剂进一步研究了直接催化木质纤维生物质原料玉米芯和竹粉定向转化制备糠醛,其中糠醛得率分别达39.5%、29.7%,木质纤维原料液化转化率分别达86.5%、80.5%。  相似文献   

3.
以γ-Al2O3为载体,采用浸渍法制备了SnO2-Pt/γ-Al2O3催化剂,探讨工艺参数(反应温度、反应时间、催化剂用量)对葡萄糖催化转化制备乳酸甲酯的影响,并对催化剂的重复使用性能以及放大实验进行探索。同时采用扫描电子显微镜(SEM)、X光射线电子能谱(XPS)、X射线衍射(XRD)、氮气吸附-脱附、NH3程序升温脱附(NH3-TPD)等对SnO2-Pt/γ-Al2O3催化剂进行了表征。结果表明:金属Pt和SnO2均匀地分散到γ-Al2O3载体上,催化剂体系同时具有B酸和L酸的分布,比表面积为117.08m^2/g,孔容为0.23cm^3/g,平均孔径为6.54nm,催化活性明显。当葡萄糖为1g、催化剂用量(以葡萄糖质量计)为10%、葡萄糖与甲醇料液比为1∶10(g∶mL)、反应温度220℃、反应10h的条件下,SnO2-Pt/γ-Al2O3表现出较高催化活性,葡萄糖转化率为92.63%,乳酸甲酯选择性高达20.08%,且催化剂表现出良好的重复使用性能和放大稳定性,重复使用3次时,葡萄糖转化率仍达88.43%,乳酸甲酯选择性达19.27%;物料投加量放大10倍时,葡萄糖转化率仍达86.27%,乳酸甲酯选择性达18.71%。  相似文献   

4.
RuCl_3·3H_2O与1-丁基-3-甲基咪唑四氟硼酸盐([BMIM]BF_4)物质的量比为100∶1,在60℃下常压搅拌2 h,再充入4.0 MPa H_2,40℃反应3 h,制得[BMIM]BF_4稳定的Ru纳米粒子催化剂;利用X射线衍射(XRD)和透射电镜(TEM)对催化剂进行了表征,结果表明:在[BMIM]BF_4中制备的Ru纳米粒子呈面心立方密堆积(ccp)结构,且Ru纳米粒子分布较均匀,其平均粒径为(2.5±0.6)nm。以水为反应介质,将该催化剂用于催化α-蒎烯加氢反应。在α-蒎烯与催化剂的物质的量比为400∶1、水用量4 mL、90℃、3.0 MPa氢气压力下反应1.5 h时,α-蒎烯的转化率即可达99%以上,其中顺式蒎烷的选择性为98.9%。  相似文献   

5.
王小瑞 《绿色科技》2019,(16):250-252
采用浸渍-化学沉淀法制备了Ru/硅藻土加氢催化剂,并采用SEM、EDS等表征手段对催化剂结构进行了测试。同时考察了Ru/硅藻土对对苯二酚加氢性能评价,实验结果表明:在Ru/硅藻土催化剂0.5 g,反应压力3.2 MPa、反应温度为150℃、反应时间5.0 h的条件下,对苯二酚的转化率为89.7%,1,4-环己二醇的选择性为72.0%。主要副产物有环己醇和4-羟基环己酮等。  相似文献   

6.
以蔗渣为原料,采用炭化-浸渍法制备碳基钌催化剂(Ru/CSB),并将其应用于催化葡萄糖加氢制备山梨醇。利用XRD、SEM和TEM对催化剂结构进行了表征,并考察了不同反应条件对催化剂性能的影响以及催化剂的重复使用效果。催化剂表征结果显示:活性金属Ru很好地负载在炭化蔗渣(CSB)载体上,且分布均匀。在蔗渣炭化温度为450℃,催化剂用量(以反应体系质量分数计)为1%,氢气压力为3 MPa,反应温度为120℃,反应时间为2 h的条件下,葡萄糖转化率为99.41%,山梨醇得率为98.13%,山梨醇选择性为98.71%。催化剂的重复使用性能较好,在重复使用5次后,Ru的分散度下降,出现团聚现象,山梨醇的得率有略微的下降,为94.80%。  相似文献   

7.
以溶胶凝胶法制备Ti O_2-Al_2O_3复合载体,采用超声波辅助浸渍负载Ni制得Ni/Ti O_2-Al_2O_3催化剂,将其应用于松节油催化加氢反应,考察了催化剂制备条件及松节油催化加氢反应条件对催化加氢的影响。结果表明,复合载体中钛铝物质的量之比(钛铝比)值0.4、载体焙烧温度550℃、超声波功率280 W、硝酸镍浸渍液浓度0.5 mol/L和超声波辅助浸渍时间2 h的条件下,制备的催化剂Ni/Ti O_2-Al_2O_3催化性能最高。最佳的加氢反应条件为:反应时间140 min、反应压力4.5 MPa、反应温度150℃和催化剂用量为松节油质量的5%,该条件下原料中α-蒎烯转化率达97.27%,产物顺式蒎烷的选择性为96.15%,顺式蒎烷的得率为93.52%。  相似文献   

8.
以鳞片石墨为原料,采用改良后的Hummer s法制备了氧化石墨烯(GO)分散液,然后以化学还原法制备非晶态Ni-P/rGO复合催化剂,并以松香加氢为探针反应考察了催化剂制备条件对催化性能的影响,进一步通过正交试验优化了松香加氢反应的工艺条件。结果表明:在Ni元素与GO质量比为6∶1、溶液pH值为11、n(P)/n(Ni)为5∶1、温度为70℃的优化制备条件下,以及反应时间4.5 h、催化剂用量5%、反应温度200℃和反应压力4.5 MPa的适宜加氢反应条件下,该催化剂对松香加氢具有较高的活性,枞酸型树脂酸转化率达99.37%,且重现性良好,该催化剂重复使用7次仍能保持较高的催化活性。X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)表征结果表明:非晶态Ni-P/rGO复合催化剂已经成功制备,未与rGO复合的Ni-P粒子颗粒较大且分散性较差,使用7次后复合催化剂中Ni 0含量相对下降,活性组分流失导致催化活性稍有降低。  相似文献   

9.
介绍了近年来纤维素催化转化制取C5/C6烷烃的反应和催化体系的研究进展,主要论述了纤维素通过水解-加氢脱氧的一锅法过程和纤维素经C6平台化合物的加氢脱氧过程,对天然木质纤维原料、纤维素、葡萄糖及山梨醇转化为烷烃的反应路径及相应的催化剂进行了总结。反应路径主要有山梨醇、异山梨醇、HMF和己内酯反应路径,催化剂主要为金属-酸多功能催化剂,酸催化剂包括金属氧化物、分子筛、杂多酸、离子液态酸性溶剂及无机酸等;金属催化剂主要有Pd、Pt、Ru、Ir、Ni等。其中金属Ru在酸性水热环境中具有良好的催化活性,研究最为广泛。通过分析各种反应途径及相应的催化剂,提出了该研究领域面临的主要问题,并从技术角度对未来应用前景进行了展望。  相似文献   

10.
1,8-二氨基萘(1,8-DAN)是一种重要的精细化工中间体,其在染料、医药中间体和感光材料等行业有着广泛的应用。目前,主要采用化学还原剂还原的方法来合成,此工艺具有产生废渣、原子经济性低等缺点。因此,发展一种绿色环保的催化加氢方法具有重要意义。笔者以具有不同Pd纳米平均粒径的Pd/C为催化剂,通过1,8-二硝基萘催化加氢制备,考察了Pd纳米粒子尺寸对1,8-二硝基萘(1,8-DNN)加氢性能的影响,探索了催化剂表面结构与催化性能的关系。首先,以椰壳炭化料为原料,经水蒸气活化法制备出孔隙发达的载体活性炭,通过不同的还原方法制备出具有不同粒径的Pd/C催化剂,以1,8-DNN的加氢反应来评价其催化性能。应用X-射线衍射(XRD)、透射电镜(TEM)、X-射线光电子能谱(XPS)、N_2吸附等手段对催化剂表面性质进行表征。结果表明:在一定粒径范围内,钯纳米颗粒的尺寸越小,催化剂的活性越高,1,8-DAN的产率和选择性越高。氢气还原使得钯纳米颗粒严重团聚,而使用甲酸和NaBH_4还原的Pd/C催化剂,Pd纳米颗粒分散性较好,并且具有良好的均一性。使用NaBH_4还原的Pd/C催化剂催化1,8-DNN加氢制备1,8-DAN的转化率和产率可分别达到100%和99%,其催化性能高于商业化的Pd/C催化剂。循环回收实验结果表明,Pd/C催化剂在回收反应过程中十分稳定,连续循环5次,活性并没有明显降低。  相似文献   

11.
腰果酚催化加氢工艺及产品的纯化和表征   总被引:2,自引:0,他引:2  
以雷尼镍为催化剂,对腰果酚进行催化加氢。系统地考察了催化加氢条件对加氢转化率的影响,并对催化剂的稳定性进行了研究。结果表明,当反应温度为118℃,反应时间4.5 h,催化剂为1.38%(以原料质量计),氢气压力为3.6 MPa及搅拌速率为400 r/min时,加氢转化率达到100%。催化剂重复利用6次,原料仍能完全转化。通过蒸馏、结晶分离纯化产品,得到高纯度的间十五烷基酚,并对其进行了表征。  相似文献   

12.
以正辛醇为溶剂、浓硫酸为催化剂,探讨了超声波-微波(UW-MW)辅助对杉木锯屑液化的强化作用,考察了工艺参数的影响,并对液化产物进行了表征分析。研究结果表明:超声波-微波具有很好的传质传热强化效应,与传统液化相比,杉木锯屑超声波-微波辅助液化反应时间从60 min缩短至20 min,液化率提高了5.24%。在溶剂与锯屑质量比值6、催化剂H2SO4浓度0.6 mol/L时,杉木锯屑液化率达到64.30%;适当添加γ-戊内酯可提高液化率,γ-戊内酯用量40%时液化率达81.17%。液化过程中,少量熔融状物质沉积在残渣(SR)表面,阻碍了原料的进一步液化;纤维素与半纤维素的降解产物主要为小分子糖类等物质,富集在水相产物(WS)中;木质素的降解产物主要由芳香族等物质组成,分布在生物油(BO)产物中。  相似文献   

13.
研究了SO42-/TiO2-ZrO2型固体超强酸催化剂的制备及其催化β-月桂烯与马来酸酐的Diels-Alder反应,通过GC、GC-MS和红外分析,确定其主产物为4-(4-甲基-3-戊烯基)-4-环己烯-1,2-酸酐。结果表明,该催化剂对β-月桂烯与马来酸酐的Diels-Alder反应有较高的催化活性和较好的选择性。考察了其催化性能的影响因素。结果表明,适宜的催化剂制备条件是:n(钛)∶n(锆)为1∶1,焙烧温度450℃。Diels-Alder反应优化的工艺条件:n(β-月桂烯)∶n(马来酸酐)为1∶1、反应时间4 h、反应温度60℃、催化剂用量1%。该条件下β-月桂烯转化率96.5%,产物选择性94.0%,产物得率90.7%。同时考察了催化剂放置时间对异构产物的影响和催化剂重复使用情况。  相似文献   

14.
γ-戊内酯是以木质纤维素生物质为原料制备的一种潜力巨大的平台化合物,它既可转化为高密度燃料、相关高分子材料以及其他高价值化学品,也可作为绿色溶剂促进木质生物质向其他高值方向转化。在化石能源日益紧俏、环境问题日益严重的今天,对γ-戊内酯进行深入研究显得尤为重要。但在实际生产中,仍存在产量低、除杂难等经济环保类问题需要解决。基于γ-戊内酯研究的最新进展,从γ-戊内酯的制备与应用两方面进行了论述,综述了生物质催化生产γ-戊内酯的研究进展,说明不同底物生产γ-戊内酯的理论基础与优缺点,并以贵金属和非贵金属催化剂为界,分类讨论了多种用于合成γ-戊内酯的催化剂。最后,结合γ-戊内酯在纤维素生物质转化应用方面的进展情况,探索了γ-戊内酯与其他相关有机物之间的制备关系,为γ-戊内酯的进一步开发利用提供了思路。  相似文献   

15.
木质纤维生物质制备乙酰丙酸及其应用综述   总被引:1,自引:0,他引:1  
随着资源的枯竭以及环境问题的日益严峻,可再生绿色资源的高值化利用日益受到重视。乙酰丙酸作为一种新一代生物质基绿色平台化合物,可用来制备燃料和高附加值的化学品。笔者详细介绍了木质纤维生物质制备乙酰丙酸的最新研究进展,重点介绍了乙酰丙酸的两条重要制备路径和各种催化体系的制备方法以及乙酰丙酸的应用。生产乙酰丙酸最原始的方法是在水溶液中进行。虽然液体酸制备乙酰丙酸具有反应效率高、反应时间短等优点,但也存在一些缺点,比如酸回收成本高、乙酰丙酸分离困难、对设备的要求高等,而固体酸的应用很好地克服了以上问题。固体酸催化剂制备过程需要考虑的是强酸位点的数量和酸位点的类型,这是生成目标化学品乙酰丙酸的关键因素。离子液体和γ-戊内酯作为绿色溶剂,也应用于乙酰丙酸的生产。此外,还对乙酰丙酸的衍生物5-氨基乙酰丙酸、γ-戊内酯和2-甲基四氢呋喃作了详细描述。最后分析了乙酰丙酸制备面临的可能挑战,提出了未来的研究方向,以期为广大研究者提供有益参考。  相似文献   

16.
研究了活性炭载Au-Ru合金催化剂对氧气还原的电催化性能和抗甲酸性能.通过X射线衍射(XRD)发现原子比为1:1的Au- Ru/C催化剂中Au与Ru形成合金.通过电化学线性扫描(LSV)测试表明该Au-Ru/C催化剂对氧气还原的电催化性能优于Au/C,Ru/C催化剂,并且发现Au-Ru/C催化剂有很好的抗甲酸性能,可以作为直接甲酸燃料电池(DFAFC)的阴极催化剂.  相似文献   

17.
在催化剂过氧磷钨酸十二烷基吡啶盐(Cat-PW4)的作用下,α-蒎烯与H2O2反应生成主要产物(3R,4R)-4,7,7-三甲基-6-氧杂二环[3.2.1]辛烷-3,4-二醇。不同反应条件对反应转化率和选择性的实验结果表明,最佳反应条件为:12.8 mmolα-蒎烯、5 m L溶剂三氯甲烷、0.2 g催化剂、3.3 m L 30%H2O2,反应温度40℃,反应时间3 h,α-蒎烯转化率和产物的选择性分别为94.7%和39.8%。反应结束后,该产物存在于水相和有机相中,通过萃取和重结晶分离提纯,得率11%,纯度达到98%;其分子结构通过红外光谱、紫外光谱、1H核磁共振谱、13C核磁共振谱、低分辨率质谱及高分辨率质谱确证。  相似文献   

18.
研究了活性炭载Au-Ru合金催化剂对氧气还原的电催化性能和抗甲酸性能。通过X射线衍射(XRD)发现原子比为1∶1的Au-Ru/C催化剂中Au与Ru形成合金。通过电化学线性扫描(LSV)测试表明该Au-Ru/C催化剂对氧气还原的电催化性能优于Au/C,Ru/C催化剂,并且发现Au-Ru/C催化剂有很好的抗甲酸性能,可以作为直接甲酸燃料电池(DFAFC)的阴极催化剂。  相似文献   

19.
以月桂烯与对苯醌为原料,合成了萘二酚衍生物,采用GC-MS、熔点测定、红外光谱和1H NMR等手段对实验产物进行了鉴定,确证产物为6-(4-甲基-3-戊烯基)-5,8-二氢-1,4-萘二酚。利用单因素试验研究了催化剂种类、催化剂用量、溶剂种类、反应温度、反应物物质的量之比和反应时间对产物得率的影响,得到适宜的工艺条件为:n(月桂烯)∶n(对苯醌)1∶1,催化剂为氯化锌,其用量为对苯醌质量的15%,溶剂为乙酸乙酯,反应温度80℃,反应时间10 h。在上述条件下,反应选择性较高,产物得率为81.0%。  相似文献   

20.
肉桂醛催化选择加氢制氢化肉桂醛   总被引:6,自引:0,他引:6  
采用煤质活性炭作载体,分别用HNO3、H2O2和(NH4)2S2O8进行预处理,然后用浸渍法负载PdCl2,在H2流中还原得到Pd/C催化剂,用于肉桂醛(CAL)选择加氢制氢化肉桂醛(HCAL)的反应。考查了Pd负载量,反应温度和压力对加氢反应的影响,优化了反应条件。进一步考查了助剂Fe、Co、Ni[1]对反应的影响。最终,CAL转化率为98%,HCAL选择性为88%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号