首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Recent findings suggest that recruitment of Japanese anchovy (Engraulis japonicus) and sardine (Sardinops melanostictus) depends on survival during not only the first feeding larval stage in the Japanese coastal waters and the Kuroshio front but also during the post‐larval and juvenile stages in the Kuroshio Extension. Spatial distributions of juvenile anchovy and sardine around the Shatsky Rise area in the Kuroshio Extension region and the Kuroshio–Oyashio transition region are described, based on a field survey in the late spring using a newly developed mid‐water trawl for sampling juveniles. All stages of anchovy from post‐larvae to juveniles were obtained in the northern Shatsky Rise area. The Kuroshio Extension bifurcates west of the Shatsky Rise area and eddies are generated, leading to higher chlorophyll concentrations than in the surrounding regions in April and May. When Japanese anchovy and sardine spawn near the Kuroshio front or the coastal waters south‐east of Japan, their larvae are transported by the Kuroshio Extension and are retained in the Shatsky Rise area, which forms an important offshore nursery ground, especially during periods of high stock abundance.  相似文献   

2.
Shelf waters of southern Australia support the world's only northern boundary current ecosystem. Although there are some indications of intense nitrate enrichment in the eastern Great Australian Bight (GAB) arising from upwelling of the Flinders Current, the biological consequences of these processes are poorly understood. We show that productivity in the eastern GAB is low during winter, but that coastal upwelling at several locations during the austral summer–autumn results in localized increases in surface chlorophyll a concentrations and downstream enhancement of zooplankton biomass. Sardine (Sardinops sagax) and anchovy (Engraulis australis) eggs and larvae are abundant and widely distributed in shelf waters of the eastern and central GAB during summer–autumn, with high densities of sardine eggs and larvae occurring in areas with high zooplankton biomass. Egg densities and distributions support previous evidence suggesting that the spawning biomass of sardine in the waters off South Australia is an order of magnitude higher than elsewhere in southern Australia. Sardine comprised >50% of the identified prey species of juvenile southern bluefin tuna (SBT, Thunnus maccoyii) collected during this study. Other studies have shown that the lipid content of sardine from the GAB is relatively high during summer and autumn. We suggest that juvenile SBT migrate into the eastern and central GAB during each summer–autumn to access the high densities of lipid‐rich sardines that are available in the region during the upwelling period. Levels of primary, secondary and fish production in the eastern GAB during summer–autumn are higher than those recorded in other parts of Australia, and within the lower portion of ranges observed during upwelling events in the productive eastern boundary current systems off California, Peru and southern Africa.  相似文献   

3.
Environmental variability and growth‐rate histories from hatching to capture were investigated for larval Japanese sardine (Sardinops melanostictus) and Japanese anchovy (Engraulis japonicus). Larvae collected around the front of the Kuroshio Current were examined using otolith microstructure analysis, and their movement was estimated from numerical particle‐tracking experiments. Sardine larvae collected inshore of the Kuroshio front originated from a coastal area near the sampling site, while those collected in the offshore area originated from an area 500–800 km west‐southwest of the sampling site. Anchovy larvae collected both inshore and offshore had been transported from widely distributed spawning areas located west of the sampling area. At the age of 13–14 days for sardine and 19–20 days for anchovy, the offshore group exhibited significantly higher mean growth rates than did the inshore group. Although the offshore area was generally warmer than the inshore area, temporal variations in growth rate are not attributable solely to fluctuations in environmental temperature. While previous studies have examined the relationship between larval growth rates and environment based solely on data at capture, the methods used in the present study, combining otolith analysis and numerical particle‐tracking experiments, utilize data up until hatching. Although the relationship between growth rate and environment was not fully confirmed, this approach will greatly advance our understanding of fish population dynamics.  相似文献   

4.
Gonosomatic indices and egg and larval densities observed from 1986 to 2001 suggest that the peak spawning season of the Australian anchovy (Engraulis australis) in South Australia occurs during January to March (summer and autumn). This coincides with the spawning season of sardine (Sardinops sagax) and the period when productivity in shelf waters is enhanced by upwelling. Anchovy eggs were abundant throughout gulf and shelf waters, but the highest densities occurred in the northern parts of Spencer Gulf and Gulf St Vincent where sea surface temperatures (SST) were 24–26°C. In contrast, larvae >10 mm total length (TL) were found mainly in shelf waters near upwelling zones where SSTs were relatively low (<20°C) and levels of chlorophyll a (chl a) relatively high. Larvae >15 mm TL were collected only from shelf waters near upwelling zones. The high levels of larval abundance in the upwelling zones may reflect higher levels of recruitment to later stages in these areas compared with the gulfs. The sardine spawns mainly in shelf waters; few eggs and no larvae were collected from the northern gulfs. The abundance of anchovy eggs and larvae in shelf waters increased when sardine abundance was reduced by large‐scale mortality events, and decreased as the sardine numbers subsequently recovered. We hypothesize that the upwelling zones provide optimal conditions for the survival of larval anchovy in South Australia, but that anchovy can only utilize these zones effectively when the sardine population is low. At other times, northern gulf waters of South Australia may provide a refuge for the anchovy that the sardine cannot utilize.  相似文献   

5.
To evaluate the impact of temporal variation of primary productivity on the recruitment of Japanese sardine (Sardinops melanostictus) in the Sea of Japan, the phenology of sea surface phytoplankton abundance was estimated from 8 day multiple satellite (SeaWiFS, MODIS‐Aqua, MERIS, and VIIRS) derived sea surface chlorophyll (SSChl) a concentrations from January 1998 to December 2015. Because relationships between SSChl a and in situ chlorophyll a concentrations were significantly different among periods based on the satellite combinations used, maximum and minimum SSChl a concentrations of 1 year were relativized as 1 and 0, respectively. Spatio‐temporal variation of relativized SSChl a concentrations was determined by using empirical orthogonal function (EOF) analysis. Scores in the first EOF mode denoted the basin‐scale variations of SSChl a concentrations in the Sea of Japan, and the major peak from the end of February to the end of May displayed the spring bloom. The logarithm of recruitment per spawner (LNRPS) for sardine was positively affected by delays in the start and end dates of the spring phytoplankton bloom. The delay of the date of the lowest sea surface temperature contributed to the delay of the end of the spring bloom during the period 1998–2015 and elevated the LNRPS during the period 1982–2015. Sardine spawns in the southern Sea of Japan from April to May, hence, delays of the spring bloom prolonged its overlap with sardine larval periods, and thus improved the recruitment of Japanese sardine in the Sea of Japan.  相似文献   

6.
Determining the factors that influence recruitment to sequential ontogenetic stages is critical for understanding recruitment dynamics of fish and for effective management of sportfish, particularly in dynamic and unpredictable environments. We sampled walleye (Sander vitreus) and white bass (Morone chrysops) at 3 ontogenetic stages (age 0 during spring: ‘age‐0 larval’; age 0 during autumn: ‘age‐0 juvenile’; and age 1 during autumn: ‘age‐1 juvenile’) from 3 reservoirs. We developed multiple linear regression models to describe factors influencing age‐0 larval, age‐0 juvenile and age‐1 juvenile walleye and white bass abundance indices. Our models explained 40–80% (68 ± 9%; mean ± SE) and 71%–97% (81 ± 6%) of the variability in catch for walleye and white bass respectively. For walleye, gizzard shad were present in the candidate model sets for all three ontogenetic stages we assessed. For white bass, there was no unifying variable in all three stage‐specific candidate model sets, although walleye abundance was present in two of the three white bass candidate model sets. We were able to determine several factors affecting walleye and white bass year‐class strength at multiple ontogenetic stages; comprehensive analyses of factors influencing recruitment to multiple early ontogenetic stages are seemingly rare in the literature. Our models demonstrate the interdependency among early ontogenetic stages and the complexities involved with sportfish recruitment.  相似文献   

7.
From 1998 to 2011, the effects of environmental conditions on the spatial and temporal trends of sardine and sardinella catch rates in the Mauritanian waters were investigated using generalized additive models. Two models were used: a global model and an oceanographic model. The global models explained more of the variability in catch rates (60.4% for sardine and 40% for sardinella) than the oceanographic models (42% for sardine and 32.4% for sardinella). Both species showed clear and inverse seasonal variations in abundances corresponding to their main spawning activities and the hydrologic seasons off the Mauritanian waters. Sardine prefer colder waters and seem to occupy the ‘gap’ in the northern part of the Mauritanian waters as soon as sardinella has left the area because of to lower water temperatures. Unlike sardinella, sardine showed a gradual southward extension between 2002 and 2009. The oceanographic model revealed that a high proportion of catch variability for the two species could be explained by environmental variables. The main environmental parameters explaining the variability are sea surface temperature (SST) and the upwelling index for sardinella, and the chlorophyll‐a (Chl‐a) concentration, the upwelling index and SST for sardine. The sardinella spatio‐temporal variations off Mauritania seem to be more controlled by thermal than productivity gradients, probably linked to the species physiological constraints (thermal tolerance) whereas sardine seems to be more controlled by an ‘optimal upwelling and temperature’ windows. The results presented herein may be useful for understanding the movement of these species along the Mauritanian coast and hence their management under a changing climate.  相似文献   

8.
European sardine (Sardina pilchardus) and round sardinella (Sardinella aurita) comprise two‐thirds of total landings of small pelagic fishes in the Canary Current Eastern Boundary Ecosystem (CCEBE). Their spawning habitat is the continental shelf where upwelling is responsible for high productivity. While upwelling intensity is predicted to change through ocean warming, the effects of upwelling intensity on larval fish habitat expansion is not well understood. Larval habitat characteristics of both species were investigated during different upwelling intensity regimes. Three surveys were carried out to sample fish larvae during cold (permanent upwelling) and warm (low upwelling) seasons along the southern coastal upwelling area of the CCEBE (13°–22.5°N). Sardina pilchardus larvae were observed in areas of strong upwelling during both seasons. Larval habitat expansion was restricted from 22.5°N to 17.5°N during cold seasons and to 22.5°N during the warm season. Sardinella aurita larvae were observed from 13°N to 15°N during cold seasons and 16–21°N in the warm season under low upwelling conditions. Generalized additive models predicted upwelling intensity driven larval fish abundance patterns. Observations and modeling revealed species‐specific spawning times and locations, that resulted in a niche partitioning allowing species' co‐existence. Alterations in upwelling intensity may have drastic effects on the spawning behavior, larval survival, and probably recruitment success of a species. The results enable insights into the spawning behavior of major small pelagic fish species in the CCEBE. Understanding biological responses to physical variability are essential in managing marine resources under changing climate conditions.  相似文献   

9.
Generalized additive models (GAMs) were fitted to sardine (Sardina pilchardus) egg distribution data from three daily egg production method surveys. The results showed that the area of egg cover off Portugal decreased significantly from 11 800 km2 in 1988 to 7000 km2 in 1997 and 7400 km2 in 1999. This is because of a significant reduction in sardine egg presence off northern Portugal, GAM estimated areas being similar or higher in the late 1990s for southwestern and southern Portugal. The distributional area covered by larvae was not estimated for 1988 (larval distribution extended beyond the survey area), although it was probably higher than the 9600 km2 for 1997 and 5500 km2 for 1999. In 1997 and 1999, the Gulf of Cadiz was also sampled, indicating extensive areas with sardine eggs and larvae (more than 50% of the total area of distribution off Portugal). Standardized data from 15 ichthyoplankton surveys between 1985 and 2000 show a decline in the mean probability of egg presence within the Portuguese continental shelf from the mid‐1980s to the late‐1990s, because of a marked reduction in egg presence off northern Portugal. Sardine larval data from the same surveys suggest that the reduction in mean probability of presence in the north is less marked than for eggs (although this comparison ignores the presence of sardine larvae beyond the continental shelf in the 1980s). Similar changes off northern Portugal and western Galicia are observed in commercial sardine catches and the acoustically estimated area of fish distribution. It is possible that the observed decline in spawning area off northwestern Iberia during the 1990s is indirectly reflecting the prevalence of environmental conditions detrimental to sardine recruitment (northerly winds during winter that favour coastal upwelling and offshore transport), which have reduced the spawning contribution of young fish in that area.  相似文献   

10.
We studied the otolith microstructure and growth of sardine, Sardina pilchardus, in the North Aegean Sea (eastern Mediterranean Sea), using samples of larvae and juveniles that had hatched in winter (November–January) and winter–spring (February–May), respectively. The juveniles had developed during an extended period coinciding with marked pelagic ecosystem changes (from winter, mixed conditions to summer, stratified waters). To examine the relationship between environmental changes and the observed variability in their otolith increment–width trajectories (width‐at‐age), we summarized the shape of trajectories with a four‐parameter set estimated from a growth model fit to each width trajectory. The individual parameter sets were then related to the potential oceanographic conditions that fish experienced during their development, derived from a hydrodynamic–biogeochemical model (POM‐ERSEM), implemented in the sampling area. Substantial seasonal effects were demonstrated on the otolith microstructure (platykurtic versus leptokurtic trajectories in winter‐mixed versus summer‐stratified conditions), which were related to the progressive sea surface warming. In a subsequent step, in order to study the effect of oceanographic conditions on larval and juvenile daily growth rates, a GAM (Generalized Additive Model) analysis of otolith increment widths was carried out, using model‐derived oceanographic parameters and taking into account the ‘inherent otolith growth’, expressed by the explanatory variables ‘previous increment width’ and ‘Age’. Results showed a strong and positive, linear effect of temperature on the growth rate of winter‐caught larvae, whereas in juveniles, which had developed within a wide range of temperatures, an optimum temperature for growth was observed at around 24°C.  相似文献   

11.
A drastic population change in Japanese sardine (Sardinops melanostictus) has been noted as being related to winter sea surface temperature (SST) in the Kuroshio Extension region. The former studies suggest two possible explanations. One is that temperature itself affects sardine. The other is that SST represents the environmental change of the Kuroshio Extension region and other causes directly affecting sardine. In this study, we found that sardine mortality from post‐larva to age 1 negatively correlated with the winter mixed layer depth (MLD) in the Kuroshio Extension region from 1979 to 1993. During the period of a deep winter mixed layer (during the early 1980s), sardine mortality was low, whereas mortality was high when the winter mixed layer was shallow (during the late 1980s to early 1990s). By using a lower trophic‐level ecosystem model forced by the observed time series of MLD, SST, light intensity and nutrient data, we found that the estimated spring zooplankton density drastically varies from year to year and has a significant negative correlation with sardine mortality. The inter‐annual variation of spring zooplankton density is caused by the winter MLD variation. During the deep winter mixed layer years, a phytoplankton bloom occurs in spring, whereas during the shallow winter mixed layer years, the bloom occurs in winter. The results of our study suggest that the decline in the Japanese sardine population during the late 1980s to early 1990s was due to an insufficient spring food supply in the Kuroshio Extension region where sardine larvae and juvenile are transported.  相似文献   

12.
Particle‐tracking experiments were performed to infer the distribution of larvae of the Japanese sardine (Sardinops melanostictus) and to detect effects of transport environment on sardine recruitment, using the output of a high‐resolution ocean general circulation model and observed data of sardine spawning grounds during 1978–2004. By the 60th day following spawning, approximately 50% of the larvae had been transported to the Kuroshio Extension (KE). Whereas the spawning period and grounds changed markedly in relation to the stock level, the proportion of larvae transported to the KE remained relatively constant and no significant correlations were found between sardine recruitment and the transport proportion. Instead, the recruitment was found to be correlated with physical parameters including the mixed layer depth and the sea surface temperature along several major transport trajectories of sardine larvae. The correlations were most significant for the trajectories in the region 0.5° south to 1° north of the Kuroshio axis (defined as the location of velocity maxima at each longitude) and for larvae spawned in February and March during the high stock period (1978–94), and for larvae spawned in March and April during the low stock period (1995–2004).  相似文献   

13.

Unprecedented large-scale algal blooms were observed during autumn 2021 around the Katsurakoi fishing port, Kushiro, eastern Hokkaido, Japan. Monitoring of shoreline water showed that chlorophyll a (Chl a) concentrations and the cell density of Karenia spp., dominated by Karenia selliformis, repeatedly increased synchronously between September and November 2021. These increases were associated with a southerly wind-driven current, which transported offshore water on the shelf towards the shoreline at the sea surface. The blooms were prolonged as a result of algal accumulation in the semi-closed fishing port. The maximum Chl a concentration and cell density exceeded 50 µg Chl a/L and 104 cells/mL, respectively. During the autumn bloom of Karenia spp., the nitrate?+?nitrite and phosphate concentrations in the water were lower than those in 2019 and 2020, and the silicate concentration was comparable. The ammonium concentration during the bloom was notably higher than before the bloom period, reaching 15 µM. Mass mortality of several fish species and echinoderms that were cultured using rearing water intake from the same shoreline occurred synchronously with the increase in Karenia spp.

  相似文献   

14.
Decadal changes in northern fur seal (Callorhinus ursinus) diet were examined based on the stomach contents data collected off the Pacific coast of northeastern Japan from January to April, 1953–1988. Seventeen families of fish and seven families of squid were identified from the stomach contents. Dominant prey species in terms of percentage of occurrence and wet weight were Japanese sardine (Sardinops melanostictus), chub mackerel (Scomber japonicus), and myctophid fishes. Demersal fishes, sparkling enope squid (Watasenia scintillans), and oceanic squids were also preyed on at low incidences. Decadal‐scale diet composition of northern fur seals revealed shifts in the significance of Japanese sardine and chub mackerel in parallel with the decadal alternation in the dominance of these species within the pelagic fish community off the Pacific coast of northeastern Japan. These results suggest that northern fur seals can use a variety of prey resources in this wintering area by switching the diet according to the distribution and abundance of prey species.  相似文献   

15.
The ingestion of an inert feed as a sole food source was investigated in larval silver sea bream (Sparus sarba) fed an alginate-based microparticulate diet. Using the auto-fluorescent properties of pigments associated with the alginate base, ingestion and gut content were investigated over a 6 h experimental period in fed and unfed larvae. By extracting and measuring chlorophyll a (Chl a) and phaeopigment content of feeding larval fish and relating this to standardized Chl a and phaeopigment content of the diet, relative to diet weight, it was determined that individual fed 7-day old larvae had a maximum gut content of 1.05±0.09 g diet while 14-day old fed fish had a maximum gut content of 3.17±0.90 g diet. On average, the gut content of 14-day old fish was 2.89 times greater than the gut content of 7-day old fish. The dry weight of larval sea bream increased from 43±4.2 g at day 7 to 134.3±20.4 g at day 14 indicating that growth of fish fed this inert feed was substantial. Gut pigment dynamics suggested that Chl a was degraded to phaeopigments by 7-day but not 14-day old larvae and the individual gut dietary content varied considerably in 14-day old fish. The maximum Chl a and phaeopigment content in larval sea bream was 0.4 ng ind–1 and 0.55 ng ind–1 for 7-day old fish and 1.54 ng ind–1 and 2.81 ng ind–1 for 14-day old fish respectively. The present method may potentially allow simple and direct assessment of larval fish feed ingestion in both an experimental and commercial setting.  相似文献   

16.
Our examination of the neon flying squid (Ommastrephes bartramii) winter–spring cohort catch per unit effort (CPUE, an index of stock) revealed significant positive correlations with the interannual variations of observed chlorophyll‐a (Chl‐a) concentration and autumn–winter mixed layer depth (MLD) in the winter–spring feeding grounds of paralarvae and juveniles (130–170°E, 20–27°N). These correlations suggest the importance of integrated bottom‐up effects by the autumn–winter MLD for the neon flying squid stocks. However, the influence of autumn–winter MLD interannual variation in the forage availability for paralarvae and juveniles, i.e., particulate organic matter and zooplankton, has still been unclear. In this study, we use the lower trophic ecosystem model NEMURO, which uses the physical environmental data from the ocean reanalysis dataset obtained by the four‐dimensional variational (4DVAR) data assimilation method. The model‐based investigation enables us to clarify how the autumn–winter MLD controls the particulate organic matter and zooplankton abundance in the feeding grounds. Further, our investigation of the autumn–winter MLD interannual variation demonstrates that the stronger autumn wind in the feeding grounds develops a deeper mixed layer. Therefore, the deep mixed layer entrains nutrient‐rich water and enhances photosynthesis, which results in good feeding conditions for paralarvae and juveniles. Our results underline that the wind system interannual variation has critical roles on the winter–spring cohort of the neon flying squid stock.  相似文献   

17.
Time series analyses (Box–Jenkins models) were used to study the influence of river runoff and wind mixing index on the productivity of the two most abundant species of small pelagic fish exploited in waters surrounding the Ebre (Ebro) River continental shelf (north‐western Mediterranean): anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus). River flow and wind were selected because they are known to enhance fertilization and local planktonic production, thus being crucial for the survival of fish larvae. Time series of the two environmental variables and landings of the two species were analysed to extract the trend and seasonality. All series displayed important seasonal and interannual fluctuations. In the long term, landings of anchovy declined while those of sardine increased. At the seasonal scale, landings of anchovy peaked during spring/summer while those of sardine peaked during spring and autumn. Seasonality in landings of anchovy was stronger than in sardine. Concerning the environmental series, monthly average Ebre runoff showed a progressive decline from 1960 until the late 1980s, and the wind mixing index was highest during 1994–96. Within the annual cycle, the minimum river flow occurs from July to October and the wind mixing peaks in winter (December–April, excluding January). The results of the analyses showed a significant correlation between monthly landings of anchovy and freshwater input of the Ebre River during the spawning season of this species (April–August), with a time lag of 12 months. In contrast, monthly landings of sardine were significantly positively correlated with the wind mixing index during the spawning season of this species (November–March), with a lag of 18 months. The results provide evidence of the influence of riverine inputs and wind mixing on the productivity of small pelagic fish in the north‐western Mediterranean. The time lags obtained in the relationships stress the importance of river runoff and wind mixing for the early stages of anchovy and sardine, respectively, and their impact on recruitment.  相似文献   

18.
Time series of European sardine (Sardina pilchardus) landings from 1962 and environmental variables from 1978 in the northern Alboran Sea are analysed. European sardine spawns in the northern Alboran Sea from mid‐autumn to late winter at a temperature range slightly higher than the one observed in the nearby Eastern North Atlantic and the North Western Mediterranean. Individuals hatched during autumn and winter are incorporated to the fishery during the following summer and autumn producing the maximum annual landings. These landings show both a decreasing long‐term trend and a strong inter‐annual variability. Although further research is needed, the warming trend of sea surface temperature and the decrease in upwelling intensity inferred from empirical orthogonal function (EOF) analyses could have some influence on the negative trends of sardine landings. The inter‐annual variability of sardine abundance seems to be related to the wind intensity at a local scale, the second principal component of the chlorophyll concentration and the sardine abundance during the preceding year. If the inter‐annual variability is considered, a linear model including these three variables with a one‐year time lag allows to explain 79% of the sardine landings variance. If the negative linear trend is also considered, the model explains 86% of the variance. These results indicate that the body condition of spawners, linked to the food availability during the preceding year, is the main factor controlling the recruitment success. The possibility of predicting sardine landings 1 year in advance could have important implications for fishery management.  相似文献   

19.
Climatic warming is affecting oceanic circulation patterns in coastal upwelling areas, but the impact of this climatic change on pelagic fish populations remains unclear. From juvenile landings collected over 38 years, the thresholds of environmental factors were determined that limited the optimal environmental window (OEW) for sardine (Sardina pilchardus recruitment success in the northwestern Iberian peninsula. The environmental factors considered were: water column stability in February, offshore water transport in March–April (QxMA), upwelling intensity in the preceding year from May to August (QxMJJA), and the winter North Atlantic Oscillation (NAO) index. From 1875 to the mid‐1920s, the mean number of years within the OEW was relatively constant. However, since the mid‐1920s, there have been oscillations and alternating decades with high and low number of years within the OEW, which were related to oscillations in sardine landings. From 1906 to 2000, there were four record, low sardine catches in the 1920s, 1950s, 1970s and 1990s, related to a high number of successive years with prevailing conditions out of the OEW. From 1875 to the present, a high year‐to‐year variation of the NAO, QxMJJA and water stability in February was observed, although with mean values usually within the OEW. The collapse in the 1950s was related, partly, to successive years with low QxMJJA. Successive years with high NAO values may be related to the collapse of the sardine fishery in the 1990s. QxMA has been the most significant factor controlling SRS in this area, being the factor related to the low catches observed in the 1920s, 1950s and 1970s. Water stability was not responsible for any of the collapses observed, but since the 1920s, there has been a significant trend toward decreasing water column stability before the onset of the spring bloom.  相似文献   

20.
The occurrence and density of Pacific saury Cololabis saira larvae and juveniles were examined in relation to environmental factors during the winter spawning season in the Kuroshio Current system, based on samples from extensive surveys off the Pacific coast of Japan in 2003–2012. Dense distributions of larvae and juveniles were observed in areas around and on the offshore side of the Kuroshio axis except during a large Kuroshio meander year (2005). The relationships of larval and juvenile occurrence and density given the occurrence to sea surface temperature (SST), salinity (SSS), and chlorophyll‐a concentration (CHL) were examined by generalized additive models for 10‐mm size classes up to 40 mm. In general, the optimal SST for larval and juvenile occurrence and density given the occurrence was consistently observed at 19–20°C. The patterns were more complex for SSS, but a peak in occurrence was observed at 34.75–34.80. In contrast, there were negative relationships of occurrence and density given the occurrence to CHL. These patterns tended to be consistent among different size classes, although the patterns differed for the smallest size class depending on environmental factors. Synthetically, the window for spawning and larval and juvenile occurrence and density seems to be largely determined by physical factors, in particular temperature. The environmental conditions which larvae and juveniles encounter would be maintained while they are transported. The survival success under the physically favorable but food‐poor conditions of the Kuroshio Current system could be key to their recruitment success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号