首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
高地隙自走式喷雾机多轮转向系统设计与试验   总被引:1,自引:0,他引:1  
大型高地隙自走式喷雾机在田间作业过程中,由于整车地隙高、质量以及体积较大,导致换行及转场作业困难,影响作业效率。为提高喷雾机的机动性能和作业效率,设计了一套全液压多轮转向系统,并提出了基于PID控制方法的四轮转向系统控制方法。在建立全液压转向系统数学模型的基础上,应用Matlab/Simulink进行了转向系统仿真分析。仿真结果表明:四轮转向过程中后轮转角对前轮转角的跟随存在0. 04 s的滞后,最大转角跟随误差为2. 82°,误差在阿克曼转向理论允许范围之内,满足转向要求。基于研发的3WPG-3000型大型高地隙自走式喷雾机,搭建了多轮转向系统实车试验平台,进行了后轮对前轮转向角的跟随控制试验,试验结果表明:在田间随机转向试验过程中,最大转角跟随误差为2. 60°,满足四轮转向要求,验证了所设计的多轮转向系统的响应性、准确性和稳定性。  相似文献   

2.
根据差速器转角关系和阿克曼转向原理,提出并分析了双对角线差速传动理论,对比以变型四轮驱动拖拉机为例的轴间刚性连接四轮驱动传动特点,论证了双对角线差速传动理论在四轮驱动方面的优良特性;利用双对角线交叉原理,提出了将驱动桥交叉布置、通过改变夹角间接改变轮距的交叉变轮距车辆底盘设计方法,克服了机械传动式车辆无法自动无级调节轮距的技术难题;针对交叉变轮距车辆底盘的双对角线差速传动特点,设计了一种双对角线可旋式专用差速器,适应了底盘变轮距特性,同时实现了对角两轮驱动和四轮驱动功能。  相似文献   

3.
为解决方程式赛车高速过弯产生的转向稳定性和单侧偏磨的问题,进一步提高赛车的过弯能力,提出一种适用于方程式赛车转向梯形的优化设计方案。探究侧偏角对转向的影响,优化标准阿克曼转角关系,从而确定目标函数和约束条件,控制转向梯形的内外转角关系尽可能符合阿克曼校正系数为43%的转向关系,通过MATLAB计算得到优化结果。利用ADAMS进行仿真实验,通过车轮平行跳动实验验证了优化结果的可靠性。结果表明优化后的转向梯形的臂长为82.55mm,底角为113.85°,具有良好的转向稳定性。  相似文献   

4.
转向梯形设计以尽量符合阿克曼原理为原则。本文研究了转向梯形内轮转角与外轮转角的函数关系,并利用MATLAB软件对不同轴距下转向梯形参数进行分析,找到最适用的轴距,并对后续转向梯形设计开发提出利用MATLAB软件进行优化分析的可行性分析。  相似文献   

5.
为提高中小功率农用轮式拖拉机的转向特性、保持直线形式性能 、减少轮胎磨损以及降低转向阻力,文章通过建立转向车轮转向时的数学模型,以置梯形作为转向梯形为例,将外侧转向轮实际转角与理论转角在转向范围内的差值最小作为转向机构参数最优化的目标.通过实例优化计算绘制左右转向车轮转角曲线,结果表明:同一内侧转向轮αmax=35°时,实际外侧转向轮转角β1与理想外侧转向轮转角β相差1.5°,差值较小.同时,左右转向轮转角关系曲线图反映左右车轮在转向过程中存在互换性,左右车轮转角关于曲线β=-α对称.因此,建立数学模型,采用优化设计方法对解决轮式拖拉机的转向机构设计与提高转向性能方面具有指导意义和重要的实际应用价值.  相似文献   

6.
为了满足红枣收获机田间作业分时四轮转向的需求,分别建立了两轮转向梯形机构、四轮转向梯形机构的空间模型,并根据阿克曼原理,分析了两轮转向梯形机构和四轮转向梯形机构内外轮转角关系,建立了梯形机构的目标函数及约束条件。同时,利用Mat Lab软件进行关键参数的择优,最终确定了两轮转向梯形机构的梯形臂长为158.95 mm、梯形底角为65.43°、转弯半径为7 455 mm;四轮转向梯形机构的梯形臂长为241.02 mm、梯形底角为60.00°、转弯半径为4 303 mm。该梯形机构的研究为提高红枣收获机的转向灵活性奠定了基础。  相似文献   

7.
针对丘陵山地拖拉机田间地头转向困难及已作业地块易被压紧压实的难题,设计了一种自适应式丘陵山地拖拉机底盘。其采用机械传动方式,发动机横向布置于车架上,动力由发动机一端经过皮带输送到变速器等传动部件用于底盘驱动行驶,另一端输出用于田间收割等作业。转向系统为断开式梯形结构设计,采用前轮偏转和四轮偏转两种转向方式,可实现全液压四轮异相位转向。结果表明:底盘最高及最低行驶速度分别为10.98 Km/h及0.91 Km/h,最大传动比为370.37,最小传动比为61.38,底盘前轮偏转时的最小转弯半径为2003mm,四轮偏转时的最小转弯半径为1494mm。该丘陵山地拖拉机具有良好的小地块作业适应能力。  相似文献   

8.
分析了转向轮定位参数中主销后倾角和主销内倾角静态检测的检测原理,给出了转向轮绕主销转动后,转向节轴线相对于水平面夹角变化的几何图形,推导了转向轮定位参数的计算公式,讨论了标定角度与实测参数相对于车轮转角的误差关系,提出了相对独立的两套角度测量系统的解决办法。测量时需用转角测量仪测量车轮转动角度,分析了当车轮中心平面与转角测量仪平面接触点为转角测量仪几何中心时的误差,提出了将红外线发射仪附着在主销底端的方案。  相似文献   

9.
汽车内、外前轮转角关系的试验研究   总被引:3,自引:0,他引:3  
对11种不同类型汽车的内、外前轮转角关系进行了测量和分析,提出了计算汽车目标内、外前轮转角关系的新公式,需要的参数包括前轮距(或左、右主销延长线与地面交点之间的距离)、轴距和平均百分比阿克曼校正率。基于试验结果,得出了上述汽车的实际平均百分比阿克曼校正率及其统计结果,可以为选择适当的平均百分比阿克曼校正率提供参考。  相似文献   

10.
单轨式运输机是解决丘陵山地运输问题的一种运输装备。针对采用非转向式结构底盘的运输机,研究其最小转弯半径与轮面间距、轴距之间的几何关系,提出三者之间的求解方程式,开发出采用C++语言的程序求解器,并根据样机试制试验情况对车轮与轨道的间隙参数进行修正。研究结果对采用非转向车轮的运输机底盘的设计具有参考意义。  相似文献   

11.
为了解决前轮导向AGV的车轮侧滑问题,基于Ackermann转向原理设计了一种变长连杆的双曲柄转向系统。通过推导转向动力学模型,建立了考虑转向阻力矩的左、右前轮转向角闭环控制模型,提出了左、右前轮转向角PID同步控制算法,利用Matlab仿真转向控制模型的动态响应,获得了相关控制参数。以松下PLC为核心,构建了由左前轮转向交流伺服电机、推杆伺服电机、驱动器和编码器组成的AGV转向测控系统,设计了前轮转向系统同步闭环控制流程,实现了满足纯滚动转向原理的左、右前轮转角实时同步控制及转角信息采集。草地路面原地转向及硬质路面S型轨迹转向行驶试验表明,前轮导向AGV转向系统的左、右前轮期望转角与实际转角误差小于0.1°,AGV转向系统近似满足车轮纯滚动无侧滑运动条件,验证了轮式AGV纯滚动转向系统设计和转向控制的正确性与有效性。  相似文献   

12.
四轮菱形布置农用高地隙作业机设计与试验   总被引:2,自引:0,他引:2  
针对玉米和甘蔗等高秆作物生长中后期田间管理缺乏有效作业机械的问题,设计了一种四轮菱形布置的农用高地隙作业机。该机采用门架式结构,具有离地间隙高、重心低、转向半径小和抗侧翻能力强的优点。左右两轮与中部机身的连接采用调整机构实现轮距大范围的精确调节,能适应不同的种植行距,减少作物根部的压实。左右两轮在高度方向也采用调整机构,在斜坡上作业时可调平车身。设计了相应的液压传动与机械传动系统,以满足驱动行走、机构调整与辅助装置工作的要求。试验结果显示,该机最大通过高度为2.8 m,最小转向半径为1.6 m,抗侧翻能力是提高车桥方案的2.4倍,轮距调节范围为0~1 000 mm,能在倾斜角小于等于25°的斜坡上调平车身。  相似文献   

13.
静液压—机械驱动桥式履带底盘分段跟随转向控制研究   总被引:1,自引:0,他引:1  
为提高静液压-机械驱动桥式履带底盘转向的可操作性及安全性,设计了一种分段跟随控制策略及利用转向盘输入的转向电控系统。根据打滑条件下履带底盘转向分析结果,求解出理论转向轨迹,并根据机械驱动桥响应复位时间进行分段处理。实际履带底盘转向轨迹根据控制策略中所划分的行驶方向角度与位置偏离限控制每一分段时间内驱动桥的离合制动器作用状态,实时跟随理论轨迹。建立了控制策略的评价方法,并进行了算法仿真和电控系统设计及实车试验。仿真结果表明控制算法履带底盘转向相对误差为5.9%~10%,执行器作用平均频率为2.5~6.6 Hz。实车试验表明,利用转向盘输入的电控转向系统可满足静液压-机械驱动式履带底盘的转向需求,能够实现驾驶人员转向意图,转向过程平稳。同时,电控系统能够有效减少履带底盘转向过程中的原地滑转,从而减小对地面和农作物的损伤。  相似文献   

14.
针对我国目前山地甘蔗收割困难、缺乏适用收获装备的问题,设计了三角履带式甘蔗联合收割机转向系统,主要包括后桥、轮桥连接架的设计和转向油缸行程确定。针对关键部件转向后桥和轮桥连接架进行了受力计算与有限元应力分析,对转弯半径进行了计算,并进行了相应的试验。关键零件应力测试试验结果表明:转向后桥的最大静应力为43. 67MPa,动态稳定应力约50MPa,仿真误差为12. 66%;轮桥连接架转向最大静应力158.59 MPa,动态应力为176 MPa,仿真的误差为9. 89%,仿真与实际基本一致。转弯半径试验结果表明:理论转弯半径为6.4m,实际测试时由于车速不同,转弯半径在6.127~6.5m范围内,与理论最大误差4.27%,在可接受范围内,转向系统的设计达到了设计要求。  相似文献   

15.
平面梯形机构不能精确实现无侧滑转向的证明   总被引:3,自引:0,他引:3  
基于“转向机构不可能精确实现无侧滑转向”的预先判断,多年来人们对轮式车辆各种转向机构做了大量优化设计工作。然而迄今为止没研究过该判断是否正确。转向机构中最具代表性的整体式等腰梯形机构常被简化为平面等腰梯形机构进行设计。在此情况下,本文通过将实际转向角方程和无侧滑方程对比,证明上述判断是正确的,即该种平面机构不能使车辆在任意转弯半径下都做精确的无侧滑转向。这一结论为平面等腰梯形转向机构的近似和优化设计提供了理论依据。  相似文献   

16.
四轮底盘在小地块水田作业时,减少地头空行转弯时间是提高作业时间利用率的重要环节。为实现四轮底盘小半径转弯,以提高水田播插底盘作业率为主要研究目标,对四轮底盘在90°、180°等不同转弯形式下进行分析,得出适合小地块水稻播插作业时以较小转弯半径的转弯方式;前桥摆转四轮底盘在转向时,通过控制前桥驱动轮的转动,使前驱动桥主动围绕着转向装置转动,可以带动底盘以任意角度转向。采用ADAMS软件对四轮底盘后轮轨迹进行模拟,在确保后轮完全不吃入已完成作业区的倒U转弯方式的情况下,提出设计前桥摆转式四轮底盘转向系统的可行性。  相似文献   

17.
针对传统燃油驱动、前轮转向的高地隙喷雾机传动效率低、碳排放高、环境污染、智能化水平低、灵活性差等问题,本研究提出了一种适用于无人驾驶的高地隙四轮独立驱动(Four Wheel Independent Drive,4WID)喷雾机。其采用混合动力、前后双转向桥的4WID,转向半径小,前后轮的运行轨迹高度一致,能够减少田间植保作业时的压苗现象。考虑水田极端作业环境下驱动轮的滑移、陷坑等问题,基于喷雾机线性时变的运动学模型(LTV),构建了考虑驱动轮滑移的分层路径跟踪控制。上层模型预测控制(Model Predictive Control,MPC)器根据预期路径、车辆当前位置,获得喷雾机的转向角和运动速度,实现路径跟踪。下层以模糊控制和积分分离PID控制构建驱动轮滑移控制器,从而实现路径跟踪、运动速度、驱动轮滑移的有效控制,提高了喷雾机在复杂作业环境中的稳定性和路径跟踪精度。采用Adams/Matlab的联合仿真结果表明,在复杂的工况条件下,喷雾机驱动轮的滑移率依然控制在±20%之内,防止驱动轮发生过度滑移对车速和转向角产生不良影响,有利于喷雾机稳定性的提升。本喷雾机能够快速准确地跟踪期望路径,与未考虑驱动轮滑移的控制相比,能够适应更加复杂的工作环境,跟踪精度有明显提升。  相似文献   

18.
农用柔性底盘通过偏置转向轴转向,4个独立的电动轮既要用于行进,又要驱动转向,控制难度大.为探明柔性底盘前轮转向过程的转向特性,建立了7自由度整车动力学模型,并通过Matlab/Simulink软件建立相应的交互控制仿真模型,进行了不同车速下单轮驱动转向与双轮比例控制转向的仿真与分析,根据仿真结果制定了控制策略;在此基础...  相似文献   

19.
建立了多轴车辆定比例转向系统理想模型和多轴车辆侧向动力学模型,通过对两模型定比例转向时的低速转向半径进行比较,验证了多轴车辆侧向动力学模型的合理性.基于该模型,分别分析了定比例转向系统和变比例转向系统的低速转向半径和高速操纵稳定性.结果表明:定比例转向的多轴转向系统低速机动性不够好,且高速稳定性很差;变比例转向的多轴转向系统在提高车辆机动性的同时,还能改善车辆的高速稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号