首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
加硒对蛹虫草主要活性成分含量的影响   总被引:1,自引:0,他引:1  
王志高  温鲁  袁小转  刘伟 《安徽农业科学》2007,35(29):9293-9294
[目的]明确不同加硒量对蛹虫草主要活性成分含量的影响。[方法]向固体培养基中加入不同含量的亚硒酸钠,接种培养后用高效液相色谱法测定虫草素和腺苷,用高碘酸钠法测定虫草酸,用苯酚-硫酸法测定虫草多糖。[结果]虫草素在加硒量为5.5mg/kg时达到4.50mg/g,虫草酸在加硒量为4.0mg/kg时达到30.06mg/g,腺苷和虫草多糖含量与加硒量无明显相关性。[结论]加硒可显著提高蛹虫草固体培养物中虫草素和虫草酸含量,但医疗保健功效的提高还需通过动物试验加以验证。  相似文献   

2.
采用不同种类培养基栽培蛹虫草,以虫草素和腺苷含量为指标,筛选出培养蛹虫草的最优培养基。结果表明,最佳栽培培养基配方为3号培养基(大米40 g+纯柞蚕蛹),以3号培养基栽培获得的蛹虫草子实体中虫草素和腺苷含量均为最高,分别达到15 986.3 mg/kg和2176.5 mg/kg,与其它实验组结果的差异达到极显著水平。  相似文献   

3.
崔亚放 《安徽农业科学》2010,38(30):17200-17201,17207
[目的]研究利用蛹虫草发酵液制取虫草保健啤酒的生产工艺过程及发酵液生物活性物质检测方法,为虫草保健啤酒的工业生产提供参考。[方法]首先筛选出合适的蛹虫草菌株,然后以蛹虫草一次发酵液与麦芽汁混合培养基作为发酵培养基,在30L发酵罐中采用单罐低温发酵方法,接着检测发酵液理化、感官指标以及应用HPLC法检测生物活性物质。[结果]该虫草啤酒的理化和感官指标均达到国家标准,其中酒精、总酸、双乙酰、真正发酵度分别达到4.6%vol、1.8mg/100ml、0.02mg/g、71%;获得了富含虫草生物活性成分的虫草保健啤酒。当发酵周期为240h时,发酵液中腺苷和虫草素含量达到最高,分别为122.3和11.8μg/ml;发酵周期为144h时,甘露醇含量达到最高,为19.75mg/L。[结论]该发酵方法可以使虫草啤酒各项指标均达到国家标准,并且赋予了啤酒虫草生物活性物质。  相似文献   

4.
[目的]研究液体培养基中添加氨基酸对蛹虫草发酵液中虫草素含量的影响,并确定8种氨基酸最佳添加浓度。[方法]考察24种氨基酸(添加浓度为1 g/L)对虫草素含量的影响,采用DPS V18.10软件进行差异显著性分析,并对促进虫草素合成作用显著的8种氨基酸添加浓度进行研究。[结果]L-赖氨酸、L-半胱氨酸、L-精氨酸、L-天门冬酰胺、L-甘氨酸、L-丙氨酸、L-丝氨酸、L-苏氨酸、L-组氨酸、肌氨酸对蛹虫草发酵液中虫草素含量具有不同程度的提高作用;4 g/L的L-甘氨酸对虫草素的合成促进作用最强,发酵液中虫草素含量为1 022.25 mg/L。[结论]该研究为蛹虫草液体发酵生产虫草素提供参考依据。  相似文献   

5.
[目的]明确不同碳氮源培养液对蛹虫草多糖及虫草酸含量的影响。[方法]以不同碳氮源培养液振荡培养蛹虫草,用苯酚-硫酸法测定虫草多糖含量,用高碘酸钠法测定虫草酸含量。[结果]培养液中多糖含量以米蛹配方最高,为6.48mg/ml,其次为玉米糁蛹的5.87mg/ml;虫草酸含量以玉米糁蛹配方最高,为5.21mg/ml,其次为米蛹的4.94mg/ml;菌丝体中多糖含量以玉米糁蛹配方最高,为68.32mg/g,其次为米蛹的57.91mg/g;虫草酸以麦米蛹配方最高,达186.29mg/g,其次为小麦蛹的180.32mg/g。[结论]选择适宜碳氮源进行蛹虫草的液体培养,可获得多糖和虫草酸含量很高的培养物。  相似文献   

6.
蛹虫草大米培养残基中虫草素提取方法的优化研究   总被引:2,自引:0,他引:2  
[目的]优化蛹虫草大米培养残基中虫草素的提取方法。[方法]以蛹虫草大米培养残基为原料,根据虫草素的理化性质,采用不同提取溶剂、温度、时间和pH值,进行单因素试验设计,利用HPLC技术检测虫草素。[结果]结果表明,蛹虫草大米培养残基中虫草素含量为2.011—2.185g/kg。不同水浴时间和温度条件的提取值为1.316~1.968g/kg。培养基残基中虫草素含量与子实体的比较系数为99.1%~110.9%。不同pH值提取液提取虫草素分别提高2.15%-15.89%。残基中虫草素优化的水溶剂提取工艺条件为:时间60min、温度60℃、pH值2.0;高浓度虫草素在水溶液中可能会发生降解。[结论]该研究为蛹虫草固体培养基的深加工和再利用以及开发新的虫草素资源提供理论依据和技术指导。  相似文献   

7.
[目的]研究蓝光对蛹虫草菌丝体中虫草素含量和分生孢子量的影响。[方法]以蛹虫草为材料,在不同的蓝光照射时间取样,以检测菌丝体中虫草素的含量,并计数蛹虫草分生孢子的产生量。[结果]蛹虫草受蓝光照射后,其虫草素的产生受到了一定的抑制,同时虫草素含量的变化也有一定的波动性;在相同的时间点,受蓝光照射的蛹虫草分生孢子数量比黑暗时的分生孢子数量要多,同时在一定时间范围内分生孢子数均呈上升趋势。[结论]该研究为系统性的研究蓝光对蛹虫草的影响奠定了基础。  相似文献   

8.
蛹虫草主要有效成分分析   总被引:5,自引:0,他引:5  
[目的]进一步开发蛹虫草,满足人们对药品和滋补保健品的需求。[方法]通过用HPLC测定核苷类化合物和氨基酸,乙醇沉淀法测定虫草多糖,比色法测定虫草酸,SOD Assay Kit-WST试剂盒测定SOD酶酶活分析蛹虫草的主要有效成分。[结果]蛹虫草子实体中含有虫草素(3′-脱氧腺苷)、腺嘌呤、脱氧胸苷、尿嘧啶、腺苷、次黄嘌呤、鸟苷、尿苷等核苷类化合物,18种氨基酸,其中以谷氨酸、精氨酸、天冬氨酸、亮氨酸含量最高;甘露聚糖和葡萄糖含量分别为13.88和16.68 mg/g,虫草酸含量为17 mg/g,胞内SOD酶酶活为515.40 U/g。[结论]蛹虫草的主要有效成分为:核苷类化合物(虫草素、腺苷、鸟苷、尿苷、肌苷)、虫草酸、虫草多糖、氨基酸、SOD酶等。  相似文献   

9.
以虫草素和腺苷含量为指标优化蛹虫草人工栽培   总被引:3,自引:2,他引:3  
为提高人工栽培蛹虫草中主要活性成分的含量,以虫草素和腺苷含量为检测指标进行蛹虫草优化栽培研究,在采用Cm-1菌株、以20%豆粕为氮源、水料比为1.4的条件下,可获得子实体产量为每瓶42.2 g、子实体中虫草素含量为4.46 mg.g-1的栽培效果,虫草素含量超过了以蚕蛹为寄主的蛹虫草(2.83 mg.g-1),表明植物蛋白完全可以用作栽培蛹虫草的氮源,同时证实采收子实体后的培养基中仍含有大量虫草素,可作为提取虫草素的原料。  相似文献   

10.
为提高虫草素的发酵产量,以蛹虫草CICC14014为初始菌株,采用紫外(UV)照射与常压室温等离子体ARTP辐射相结合进行复合诱变,同时利用多孔板高通量筛选法实现虫草素高产突变菌株的快速筛选。结果表明:高产突变菌株在液体浅层静置培养条件下虫草素产量可达5.98 g/L,比初始菌株(2.43 g/L)提高了146.1%。经过10次传代后菌株活性依然保持较高的水平。同时对诱变后菌株进行了温度驯化,经过10轮温度梯度驯化,可耐28℃,最终产量可达6.56 g/L。  相似文献   

11.
[目的]为了改良酱油生产的传统工艺,生产出添加北虫草的营养丰富的特色酱油。[方法]在酱油生产工艺不同时期内添加北虫草培养基,经过淋油后继续发酵10 d,对所制得的酱油半成品进行还原性糖、总酸、氨基酸态氮以及虫草多糖的测定。[结果]北虫草培养基添加量为10 g,米曲霉按0.3%接种到发酵基料中,盐分浓度为16%时,发酵生产北虫草特色酱油比较适宜。北虫草培养基与发酵基料共同发酵时的工艺4比前3个酱油发酵工艺营养物质含量多,此时所测得的总酸含量2.23 g/ml、氨基酸态氮含量0.89%、还原糖含量3.11%、虫草多糖含量为260 mg/ml。[结论]研究提出了北虫草特色酱油的总的发酵工艺,为实际的工业化生产提供参考。  相似文献   

12.
[目的]研究生物磁效应对蛹虫草(Cordyceps militaris)液体发酵培养的影响.[方法]利用场强为0.10T、0.25 T、0.40T恒定磁场,以流速为1 m/s,分别对普通水进行9次处理,串联(SC)磁场处理3次的磁处理水,用于液体培养蛹虫草,研究了生物磁效应对蛹虫草胞外蛋白酶、淀粉酶、多酚氧化酶、虫草素、虫草酸、多糖含量及菌丝干重的影响,并且对胞外酶活性与以上指标相关性进行了分析.[结果]0.40 T处理能显著促进蛹虫草胞外蛋白酶和多酚氧化酶活性,提高菌丝干重及虫草酸含量,相比对照组,其酶活高峰分别提高了38.98%和16.75%,菌丝干重和虫草酸分别提高了27.12%和22.93%;0.10 T处理可显著提高胞外淀粉酶活性和多糖含量,相比对照组,酶活高峰提高了34.94%,多糖含量提高了18.32%;0.25 T处理有利于虫草素的积累,比对照组提高了16.49%.相关性分析结果表明,胞外蛋白酶活性与菌丝干重、虫草酸含量在0.05水平呈显著正相关,为关键酶.[结论]不同场强处理的磁化水均能显著提高蛹虫草液体培养胞外酶活性、菌丝干重及主要药用成分含量,但影响规律存在一定的差异性,可为发酵生产蛹虫草药用成分提供理论依据和参考.  相似文献   

13.
张海英 《安徽农业科学》2010,38(34):19294-19294,19297
[目的]探明磁处理对蛹虫草(Cordyceps militaris)产生胞外多糖的影响,为蛹虫草胞外多糖的进一步研究奠定基础。[方法]采用不同磁场强度及不同处理时间对蛹虫草的液体菌种进行处理,采用乙醇沉淀法提取其胞外多糖。[结果]不同梯度的磁场强度处理对蛹虫草胞外多糖的影响明显,随着磁处理强度的增大,蛹虫草产胞外多糖的量呈上升趋势,但均低于对照。[结论]磁处理对蛹虫草胞外多糖的产生起抑制作用。  相似文献   

14.
[目的]通过响应面法优化酶提取蛹虫草培养基中虫草多糖的条件。[方法]测定蛹虫草培养基成分,并用酶法提取培养基中虫草多糖,对其提取条件进行单因素试验,筛选出最佳水解酶。在单因素试验的基础上,以响应面法优化温度、pH、酶加量和料液比等4个因素,并对试验结果进行数学模拟和预测,优化各因素水平,探讨因素间的交互作用。[结果]提取培养基中虫草多糖的最佳水解酶确定为酸性蛋白酶,其提取虫草多糖的最优条件为:温度39.89℃,pH3.12,酶加量2.39%,料液比1∶75.78,水解时间4h,在该条件下预测的多糖得率为10.11%。按该最佳条件进行验证试验,提取的多糖平均得率为9.96%,表明所得最佳提取条件比较可靠。[结论]该试验优化了蛹虫草培养基多糖的提取条件,对蛹虫草培养基的利用及虫草多糖的生产具有一定的理论指导价值。  相似文献   

15.
提高蛹虫草质量和产量的综合生产技术研究   总被引:1,自引:0,他引:1  
杨强  刘金龙  郑小江  陈瑶 《湖北农业科学》2012,51(18):4069-4075,4081
目前市场上生产的蛹虫草产品没有统一的质量标准,影响市场对蛹虫草产品的消费,研究结果表明,蛹虫草菌种Hz1孢子复壮的菌株培养的子实体干重高于菌种B1、Bz1、H1孢子复壮的菌株培养的子实体干重,其液体培养基最优组合为葡萄糖20 g/L、蛋白胨8 g/L、KH2PO4 1.0g/L、MgS04 500 mg/L.生产富硒蛹虫草培养基的最优主料为富硒大米45 g、培养液55 mL,在培养温度为22℃、空气相对湿度70%时蛹虫草子实体生长最好.综合而言,子实体培养最优条件为日间温度22℃、夜间温度15℃、空气相对湿度70%、光照度200 lx,并结合先用日光灯照射、待子实体长至1~2 cm时使用蓝紫灯照射处理的产量最高.检测结果显示,蛹虫草子实体的有效成分含量分别为硒52.03 mg/kg、蛋白质27.74%、腺苷0.05%、多糖2.50%、虫草素2.61%、氨基酸26.92%,尤其是所含的虫草素具有工业提取价值.  相似文献   

16.
安冬  朱蓓薇 《安徽农业科学》2012,40(25):12666-12668,12670
[目的]通过响应面法优化酶提取蛹虫草培养基中虫草多糖的条件。[方法]测定蛹虫草培养基成分,并用酶法提取培养基中虫草多糖,对其提取条件进行单因素试验,筛选出最佳水解酶。在单因素试验的基础上,以响应面法优化温度、pH、酶加量和料液比等4个因素,并对试验结果进行数学模拟和预测,优化各因素水平,探讨因素间的交互作用。[结果]提取培养基中虫草多糖的最佳水解酶确定为酸性蛋白酶,其提取虫草多糖的最优条件为:温度39.89℃,pH 3.12,酶加量2.39%,料液比1∶75.78,水解时间4 h,在该条件下预测的多糖得率为10.11%。按该最佳条件进行验证试验,提取的多糖平均得率为9.96%,表明所得最佳提取条件比较可靠。[结论]该试验优化了蛹虫草培养基多糖的提取条件,对蛹虫草培养基的利用及虫草多糖的生产具有一定的理论指导价值。  相似文献   

17.
对比分析了野生冬虫夏草、野生蛹虫草和人工栽培蛹虫草3种常见虫草的活性成分,结果表明,人工栽培的蛹虫草活性成分的种类与野生虫草相同,氨基酸总量高于野生冬虫夏草,虫草素、虫草酸、虫草多糖,超氧化物歧化酶(SOD)、维生素含量远高于野生蛹虫草,而人工栽培的蛹虫草中微量元素种类也与野生虫草相同,且未检测到对人体有害的Pb和Cr。人工栽培的蛹虫草完全可以代替野生蛹虫草来进行工厂规模化生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号