首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 500 毫秒
1.
利用正交设计优化牡丹SRAP-PCR反应体系   总被引:13,自引:2,他引:11  
利用正交设计L16(45对牡丹SRAP-PCR反应体系的五因素(Taq,Mg2+,模板DNA,dNTP,引物)在四个水平上进行优化试验,得出如下结论:各因素水平变化对PCR反应的影响从大到小依次为:Tap,引物,dNTPs,Mg2+,模板DNA;筛选出各反应因素的最佳水平,建立牡丹SRAP-PCR反应的最佳体系(25μL)为:Taq酶0.5 U,Mg2+2.0 mmol/L,模板DNA 50 ng,dNTF 0.2 mmol/L,引物0.30 μmol/L.这一优化系统的建立为今后利用SRAP标记技术对牡丹进行相关研究提供了帮助.  相似文献   

2.
杨梅SRAP-PCR反应体系的建立与优化   总被引:1,自引:0,他引:1  
为了建立适宜杨梅基因组DNA的SRAP-PCR扩增体系。以杨梅基因组DNA为模板,通过正交试验设计,从Mg2+、模板DNA、dNTPs、Tap DNA聚合酶和引物5种因素4个水平对杨梅SRAP-PCR反应体系进行优化。各因素对杨梅SRAP-PCR反应的影响程度从大到小依次为:Mg2+,模板DNA,dNTP,引物和Taq DNA聚合酶;建立的杨梅SRAP-PCR最佳反应体系为25μL反应体系中含2.5 mmol/L Mg2+、50 ng DNA模板、0.25 mmol/L dNTPs、0.15 μmol/L引物和1.5 U Taq DNA聚合酶。这一体系的建立为今后利用SRAP-PCR技术开展杨梅分子遗传学研究打下了基础。  相似文献   

3.
橄榄SRAP-PCR体系的建立和优化   总被引:2,自引:0,他引:2  
以橄榄品种为材料,采用L16(45)的正交试验设计,对影响PCR反应的Taq酶量、Mg2+浓度、模板DNA含量、dNTPs浓度和引物浓度5个因素进行了SRAP-PCR扩增反应条件优化研究,并利用反应体系对11个橄榄品种进行了SRAP-PCR扩增。结果表明:在20μl体系中,Taq酶1.5U、Mg2+2.5 mmol/L、模板DNA 60ng、dNTPs 0.2 mmol/L和引物0.15μmol/L时的扩增效果最好;利用该体系,SRAP标记引物对Me5- Em2在11个橄榄品种中可以扩增出7条清晰的多态性条带。  相似文献   

4.
桃SRAP-PCR反应体系的建立与优化   总被引:7,自引:1,他引:6  
建立适宜桃基因组DNA的SRAP-PCR扩增体系,为桃基因图谱的构建和分子标记打下基础。以桃基因组DNA为模板,通过正交试验设计,从dNTPs、Mg2+、Taq酶、引物、模板5种因素4个水平对桃SRAP-PCR反应体系进行优化,所建立的体系为25μL:dNTPs为0.12 mmol/L,Mg2+为4 mmol/L,Taq酶2 U,引物为0.3 mmol/L,模板DNA50ng。PCR反应程序为:94℃预变性5 min;94℃变性l min,35℃复性l min,72℃延伸l min,5个循环;94℃变性l min,50℃复性l min,72℃延伸l min,35个循环,72℃延伸10 min。  相似文献   

5.
柑桔SRAP和ISSR分子标记技术体系的建立与优化   总被引:16,自引:0,他引:16  
通过对PCR反应程序、反应体系(DNA模板量、PCR反应体积、Mg2 浓度、dNTP浓度、Taq酶用量、引物量)、电泳检测方法的系统优化,建立了柑桔SRAP-PCR和ISSR-PCR体系;以此进行大规模引物筛选,从而建立了柑桔SRAP和ISSR分子标记技术体系.SRAP-PCR:25μL体系,模板DNA25ng,Tris-HCl10 mmol/L,KCl50 mmol/L,Mg2 1.2 mmol/L,dNTP 120 μmol/L,Taq酶1.5U,引物0.4μmol/L,反应程序为94℃预变性5min,35个循环(94℃ 30s,47℃ 1min,72℃ 1min),72℃延伸10min;ISSR-PCR:25μL体系,模板DNA25ng,Tris-HCl10mmol/L,KCl50mmol/L,Mg2 1.6 mmol/L,dNTP200μmol/L,Taq酶1 U,引物0.8μmol/L.筛选出稳定性好、多态性高的24对SRAP引物和13条ISSR引物.  相似文献   

6.
为了建立油松cDNA SRAP-PCR反应体系,利用正交设计L16(45)对PCR反应体系的Taq酶、模板cDNA、引物、Mg~(2+)、d NTP这五个因素在四个水平上进行优化。使用SPSS软件对PCR结果结合方差分析和直观分析。结果表明:不同因素水平的变化对SRAP-PCR反应的影响大小依次为d NTP模板c DNATaq酶引物Mg~(2+)。筛选各因素最佳水平,油松c DNA SRAP-PCR最佳反应体系(20μL):Taq酶2 U,c DNA模板用量80~120 ng,引物浓度0.4μmol/L,Mg2+浓度1.5 mmol/L,d NTP浓度0.2 mmol/L。这一优化体系的建立有助于今后利用cDNA-SRAP技术对油松进行基因表达差异的分析。  相似文献   

7.
牡丹杂交品系SRAP-PCR反应体系优化及引物筛选   总被引:2,自引:2,他引:0  
通过研究牡丹杂交新品系的遗传多样性,解决其在牡丹品种分类体系中位置的问题。利用正交设计,从Mg2+、dNTPs、引物浓度、DNA聚合酶和不同模板DNA浓度5种因素4个水平来优化牡丹杂交品系SRAP-PCR反应体系,对引物进行筛选。建立牡丹杂交品系SRAP-PCR反应最佳体系(25 μL)为: 2.0 mmol/L Mg2+、1.5 U Taq酶、0.25 mmol/L dNTPs、2 ng/μL模板DNA、0.25 μmol/L引物;运用试验结果从100对引物中筛选出扩增条带清晰、多态性丰富的SRAP引物30对。优化体系的建立及引物的筛选,可为利用SRAP标记技术研究牡丹杂交品系的遗传多样性及亲缘关系提供技术基础和理论依据。  相似文献   

8.
葡萄5BB品种SRAP-PCR反应体系影响因素   总被引:1,自引:1,他引:0  
为建立适合葡萄5BB品种的SRAP-PCR反应体系,利用正交设计对葡萄SRAP-PCR反应体系5种因素(Taq DNA聚合酶,Mg2+,模板DNA,dNTP,引物)4个水平进行优化。结果表明,各因素水平变化对PCR反应的影响从大到小顺序为:Mg2+,引物,dNTP,Taq DNA聚合酶,模板DNA;筛选出各因素的最佳水平,建立了葡萄5BB品种SRAP-PCR反应的最佳体系(20μL)为:Taq DNA聚合酶2U,Mg2+2.0mmol/L,模板DNA60ng,dNTP0.25mmol/L,引物0.10μmol/L。这一优化系统的建立为今后利用SRAP标记技术对葡萄进行相关研究提供了帮助。  相似文献   

9.
风信子ISSR-PCR体系的优化及引物筛选   总被引:1,自引:0,他引:1  
以风信子基因组DNA为ISSR-PCR扩增模板,采用单因素试验方法,对影响PCR扩增体系中Mg2+浓度、dNTPs、模板DNA及引物浓度、Taq酶的用量5个因素进行研究,建立了风信子ISSR-PCR扩增最佳反应体系,即:20μL反应体系中分别加入2μL10×Buffer、1.4μL Mg2+(25mmol/L)、1.5μL dNTPs(2.5mmol/L)、1.5μL引物(10pmol/μL),0.2μLTaq酶(5U/μL),1.2μL模板(30ng/μL),ddH2O补足体积。并以此体系对110条引物进行筛选,最终获得了多态性高,重复性好的引物12条。  相似文献   

10.
为建立最佳的宫粉紫荆SRAP-PCR反应体系,采用单因素和L16(45)正交试验设计对反应体系中的模板DNA、Mg2+、引物浓度、d NTPs和Taq聚合酶进行优化。表明宫粉紫荆SRAP-PCR 25μL反应体系的最佳组合为:模板DNA 50 ng、Mg2+2.25 mmol/L、引物0.25μmol/L、d NTPs 0.30 mmol/L、Taq酶1.5 U。并利用优化的SRAP-PCR体系进行验证,表明不同的宫粉紫荆样本均能扩增出清晰且带型基本一致的谱带,表明本试验建立的SRAP-PCR体系稳定,可用于今后开展宫粉紫荆种质资源遗传多样性研究、品种鉴定、优良品种筛选和近缘种杂交育种等研究工作。  相似文献   

11.
龙眼SRAP反应体系的建立和优化   总被引:3,自引:1,他引:2  
采用分步优化的方法对影响龙眼SRAP-PCR反应的模板DNA用量、Mg2+浓度、dNTP浓度、引物浓度、TagDNA聚合酶用量等进行了研究。确立了适合龙眼SRAP分析的反应体系,即体系总体积25μl,包含1×PCR Buffer ,Mg2+ 2.0mmol/L,dNTPs 0.5 mmol/L,引物0.3μmol/L,模板DNA 10ng, TaqDNA聚合酶1.5 U。结果表明,该体系能很好地满足龙眼基因组SRAP扩增的要求,SRAP标记应用于龙眼遗传研究是可行的。  相似文献   

12.
番石榴SRAP反应体系的建立与正交优化   总被引:1,自引:1,他引:0  
采用正交设计方法,对影响番石榴SRAP反应体系的Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA浓度等进行了优化,建立了适用于番石榴的SRAP反应体系。该优化的20 μL反应体系中包含2.5 mmol/L Mg2+,0.15 mmol/L dNTPs,0.4 μmol/L引物,1.5 U Taq DNA聚合酶和20 ng模板DNA。利用该优化体系通过64对SRAP引物组合对5份番石榴材料进行了SRAP-PCR扩增,结果表明SRAP引物及优化后的反应体系能够有效地用于番石榴种质资源鉴定及遗传多样性分析等研究。  相似文献   

13.
为了建立光萼荷属植物(Aechmea) SRAP-PCR反应体系,为今后光萼荷属植物种质资源研究提供技术支持,本研究通过L16(45)正交试验设计,对光萼荷属植物SRAP反应体系中的Mg2+、dNTPs、Taq DNA聚合酶、引物和模板DNA浓度等5个因素进行优化实验,并筛选多态性SRAP引物组合。结果表明,光萼荷属植物的最佳SRAP反应体系为1.50 mmol/L Mg2+、400 μmol/L dNTPs、1.5 U Taq DNA聚合酶、15 μmol/L引物、30 ng模板DNA及1×PCR buffer。各因素对SRAP-PCR扩增反应结果影响的差异较大,依次为模板DNA>Taq DNA聚合酶>dNTPs>引物>Mg2+。从56对SRAP引物组合中筛选出51对扩增条带清晰、多态性丰富的SRAP引物组合,多态性引物比率达90%以上。通过不同光萼荷属植物和不同引物组合对该反应体系进行验证,均获得了多态性丰富、条带清晰的扩增图谱,表明本研究建立的光萼荷属植物SRAP-PCR反应体系稳定可靠。  相似文献   

14.
壳菜果ISSR-PCR反应体系的建立与优化   总被引:2,自引:2,他引:0  
为建立一个稳定、可重复的壳菜果ISSR-PCR反应体系,以壳菜果的总DNA为实验材料,通过单因素实验、正交试验和方差分析对模板DNA浓度、dNTPs浓度、镁离子浓度、引物浓度、Taq DNA聚合酶浓度5因素进行研究,确定了壳菜果ISSR-PCR反应的最优体系为:在20 μL的反应体系中模板DNA为30 ng,dNTPs浓度为0.20 mmol/L,Mg2+浓度为2.75 mmol/L,引物浓度为0.6 μmol/L,TaqDNA聚合酶为2.2 U。方差分析表明:5个因素中只有Mg2+浓度对反应体系影响最大,达到了显著性水平。  相似文献   

15.
海南岛为中国油茶资源分布的最南缘,海南油茶资源丰富,特色显著。本研究以海南油茶基因组DNA为模板,采用单因素试验和正交试验相结合的方法,分析DNA浓度、dNTPs浓度、Taq DNA聚合酶用量和引物浓度对海南油茶SRAP-PCR扩增结果的影响,构建海南油茶SRAP-PCR体系,对多态性引物组合进行筛选,为SRAP分子标记在海南油茶资源遗传多样性评价和鉴定提供条件。单因素试验结果表明:在本试验中,海南油茶基因组DNA浓度高低对扩增效率影响不大,低浓度dNTPs有利于获得较好的扩增产物,而中高浓度的Taq酶和引物可提高扩增效果。正交试验结果表明:在适宜浓度范围内,各因素对海南油茶SRAP-PCR扩增影响大小依次为:引物>dNTPs>Taq DNA聚合酶>模板DNA;总体系为20μL时,最佳反应体系中模板DNA用量为5 ng,dNTPs浓度为0.20 mmol/L,引物浓度为0.60μmol/L以及Taq DNA聚合酶用量为4.00 U。采用稳定SRAP-PCR体系,对400对SRAP引物进行筛选,获得32对多态性好、条带清晰的有效引物,可用于海南油茶遗传多样性分析和种质资源鉴定等研究。  相似文献   

16.
为了建立青蒿的SRAP最佳扩增体系,并筛选出SRAP多态性引物,本研究以青蒿叶片DNA为模板,采用正交试验设计,以Mg^2+、dNTP Mix、Taq DNA聚合酶、引物和DNA模板5种因素5个水平,对青蒿SRAP反应体系进行研究。结果表明,青蒿SRAP-PCR最佳反应体系为:引物0.6μmol/L、Mg^2+2.0 mmol/L、模板DNA 5.1 ng、Taq DNA聚合酶2.0 U、dNTPs 0.25 mmol/L,总体积为25μL。各因素对扩增反应均有不同影响,其中引物浓度的影响最大,dNTPs的影响最小。运用该体系对不同种质资源的青蒿进行验证,证明该体系稳定可靠,并在30个引物组合中筛选出了25对扩增条带清晰,多态性丰富的引物组合。这一结论为今后利用SRAP标记技术进行青蒿分子遗传学研究提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号