首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
流动沙丘水分动态状况是合理进行固沙植被配置的基础,而降雨及其入渗特征又是影响流动沙丘水分动态的重要因素。采用Watchdog土壤水分自动监测系统和CR-1000型自动气象站自动采集的降雨数据,同步监测了浑善达克沙地南缘多伦县流动沙丘0~120cm土层土壤体积含水量的动态变化。结果表明:6月21日至10月31日间,流动沙丘不同土层水分含量变化受降雨量、累计降雨量以及降雨入渗效应等多因素的影响。其中,流动沙丘40cm以上土层水分动态对日降雨量的响应敏感,日降雨50mm或受累计降雨入渗效应的影响能够提高80cm和120cm土层水分含量。降雨量20mm时降雨湿润深度低于20cm土层、30mm时湿润深度为40~80cm土层、49.27mm时湿润深度可达120cm土层,说明降雨对流动沙丘水分状况有补给作用,但是对80cm以下土层水分状况的补给能力有限。  相似文献   

2.
晋西黄土区刺槐林地土壤水分对降雨的响应   总被引:7,自引:1,他引:6  
通过野外坡面降雨试验,对晋西黄土区刺槐林地内土壤水分进行连续定位观测,以揭示晋西黄土区坡面土壤水分对降雨的响应,旨在为黄土高原区水土流失治理提供一定的理论依据。结果表明:1)坡面土壤含水率受植被密度影响较明显,密度较高的刺槐林地相对于密度较低的林地或裸地而言,其林地内坡面土壤水分对降雨的响应较平缓。2)垂直方向上,0~20 cm土层土壤含水率对降雨的响应最为直接和迅速。植被密度不同,各测点次表层(10~20 cm土层)土壤含水率的上升有先后之分,与表层(0~10 cm土层)相比,次表层的土壤含水率变化有一定的滞后和延长,体现出土壤水分入渗的先后过程。深层(20~150 cm土层)土壤含水率对降雨几乎无响应过程。3)坡面上表层土壤含水率对降雨的响应受降雨强度和植被密度影响,当降雨强度较小时,土壤含水率变化会出现上升期和退水期;当降雨强度较大时,土壤含水率变化则分为上升期、平台期和退水期,各期到达时间会因植被密度增加而出现相应的滞后现象。   相似文献   

3.
为了研究森林涵养水源机制,选择南京城郊麻栎Quercus acutissima林,采用ECH20土壤含水率检测系统在坡面0M00CHI深土壤5,15,30,40,60,100CHI等6个深度层次进行土壤水分定位监测,分析了小雨、中雨、大雨条件下南京城郊麻栎林地各层次土壤水分变异过程,分析各土壤层次体积含水率的变化过程对降雨强度响应曲线,得到5cm和15cm层次土壤水分变化与降雨量变化有良好的同步性,在降雨量6.8mm,11.8mm和36.8mm时5cm和15cm层次的土壤体积含水量变化量分别是1.48%和2.10%,5.21%和5.72%,7.55%和7.85%;随着土壤层次的加深土壤含水率变化趋势与降雨量同步性逐渐下降,在中雨和大雨中土壤含水量的峰值会延迟1~2小时,在小雨下无变化。在降雨强度0-4.0mm·h^-1,土壤含水率自表层到30cm变异幅度增大,5cm,15cm和30cm层次土壤体积含水量变化量分别是1.48%,2.10%和2.90%;降雨强度12~30mm·h^-1,土壤含水率自表层到60cm层次变异幅度降低特征,5,15,30,40和60C[II的土壤体积含水量变化量分别是8.01%,7.85%,6.39%,5.96%和2.63%,而100cm层次土壤含水率却变异幅度显著土壤体积含水量变化量达到8.97%。在2011-2012年中研究的3场降雨量为6.8cm,16.2cm和36cm中,在降雨强度0~60.0mm·h^-1。区间,0~60cm层次土壤水含水率的增加量显著高于降雨量,无地表径流发生,最大侧向流分别为2.1mm·h^-1,2.4mm·h^-1。和28.7mm·h^-1,呈非饱和下渗现象。研究了在小、中、大降雨强度下,0~1.00m深度土壤垂直坡面上各层次侧向流对降雨强度响应的变化曲线,揭示了林地侧向流对各层土壤含水率变化的影响规律。图6表1参19  相似文献   

4.
【目的】研究新疆玛纳斯河流域七大灌区内的土壤含水率及斥水性(用滴水穿透时间表示)的空间变异规律。【方法】在玛纳斯河流域七大灌区布设了400个土壤样点,分别用烘干法和滴水穿透时间法测定各土样的土壤含水率和滴水穿透时间,应用经典统计学方法和考虑高程影响的CoKriging方法分析各灌区土壤含水率及滴水穿透时间的变异规律。【结果】新疆玛纳斯河流域0~10,10~20cm土层土壤含水率均值分别为12.00%和15.60%,平均土壤含水率以10~20cm土层更高;滴水穿透时间均值为1.64s,整体属于不斥水土壤。通过不同趋势效应下预测误差值及块金效应的比较,结果显示,0~10,10~20cm土层土壤含水率空间变异的最优模型分别为0阶指数模型和0阶球状模型,土壤滴水穿透时间空间变异的最优模型为2阶指数模型。0~10cm土层土壤含水率变化呈现出从东南和西北分别向西南和东北方向逐渐减小的趋势,10~20cm土层土壤含水率的变化呈现出从东向西、从南向北逐渐减小的趋势;0~10cm土层土壤含水率变异程度大于10~20cm土层。滴水穿透时间的变化呈现出从东南和西北分别向西南和东北方向逐渐减小的趋势,与0~10cm土层含水率的分布格局相似。【结论】灌区0~10与10~20cm土层土壤含水率的空间分布格局类似,滴水穿透时间的空间分布属于强变异。  相似文献   

5.
以江西省泰和县老虎山小流域为研究对象,使用ECH_2O土壤含水率监测系统,对该区域百喜草(Paspalum notatumn)地、马尾松(Pinus massoniana)林地不同土层土壤含水率进行了定位监测,以裸地作为对照,分析红壤丘陵区百喜草地、马尾松林地各土层土壤水分对不同强度降水的响应。结果表明:(1)降雨后,不同土层深度土壤含水率的变化趋势相同且同一植被各土层土壤含水率从大到小依次为:5、15、30、60 cm土层。(2)同一土层,百喜草土壤含水率增长最快,其次为马尾松,最后为裸地。其中小雨时,,其他土层土壤含水率均有增加(百喜草增加2.42%~3.81%,马尾松增加1.94%~3.10%,裸地增加1.30%~2.34%),60 cm土层无响应;中雨时,百喜草土壤含水率增加1.73%~3.89%,马尾松增加1.56%~3.45%,裸地增加1.41%~2.98%;大雨时,百喜草土壤含水率增加2.94%~8.81%,马尾松土壤含水率增加2.51%~8.10%,裸地土壤含水率增加2.44%~7.67%。(3)土壤含水率主要受降水影响,降雨强度越大,土壤含水率增长速率越快。降雨强度为4.43 mm/h时,5 cm土层土壤含水率增长速率为(0.42%~0.57%)/h,15 cm土层土壤含水率增长速率为(1.91%~2.16%)/h,30 cm土层土壤含水率增长速率为(1.74%~1.98%)/h,60 cm土层无响应;降雨强度为12.74 mm/h时,5 cm土层土壤含水率增长速率(4.41%~4.89%)/h,15 cm土层土壤含水率增长速率为(4.98%~5.41%)/h,30 cm土层土壤含水率增长速率为(2.33%~3.06%)/h,60 cm土层土壤含水率增长速率为(0.34%~0.52%)/h;降雨强度为22.49 mm/h时,5 cm土层土壤含水率增长速率为(5.38%~5.83%)/h,15 cm土层土壤含水率增长速率为(5.60%~6.02%)/h,30 cm土层土壤含水率增长速率为(3.26%~3.61%)/h,60 cm土层土壤含水率增长速率为(1.05%~1.27%)/h。(4)在同一降水类型条件下,百喜草地土壤退水时间最长,其次为马尾松林地,最后为裸地。  相似文献   

6.
以山东省莱芜市香山地区2种主要森林类型地表死可燃物为研究对象,从2015年3月中旬开始分别观测不同地表死可燃物的含水率,分析3次降雨对不同地表死可燃物含水率的影响;根据野外观测的气象数据,分析可燃物含水率与部分气象因子的相关性;并且测定不同林分枯落叶的熄灭含水率,结合熄灭含水率分析雨后不同林分的火险情况。结果表明:1)不同可燃物类型含水率受降雨影响程度具有差异性,麻栎林内,降雨前后可燃物含水率变异率表现为枯落叶>10 h枯枝>1 h枯枝;油松林内表现为10 h枯枝>1 h枯枝>枯落叶。并且3次不同的降雨对可燃物含水率影响具有差异性,第1次降雨对可燃物含水率影响较小,第2次降雨较大,第3次降雨中等。不同可燃物类型含水率雨后衰减率具有差异性,麻栎林内,可燃物含水率3次降雨后衰减率绝对值均表现为枯落叶>10 h枯枝>1 h枯枝;油松林内表现为10 h枯枝>1 h枯枝>枯落叶。2)所调查6种可燃物类型含水率与空气相对湿度均呈极显著正相关,与林内空气温度呈负相关,但未达到显著水平,与林内平均风速呈极显著负相关。3)麻栎、油松枯落叶熄灭含水率分别为16.62%、23.23%,降雨导致栎林、油松林地表枯落叶含水率增大,枯落叶含水率在雨后一定时间内,高于熄灭含水率,此时,林内无火灾危险;但随着降雨结束,雨后天数的增加,林内枯落叶含水率降低,当低于熄灭含水率时,林内开始有火灾危险。  相似文献   

7.
宜林荒山春季土壤含水率与气象因子的相关分析   总被引:2,自引:1,他引:2  
利用4年观测资料,进行了晋东南石灰岩区宜林荒山春季土壤含水率与气象因子的相关分析.土壤解冻至6月上旬雨季到来之前土壤含水率逐渐降低,为土壤水分的跑墒阶段,这段时间坡向间、土层间的年际变化较大.经对17个气象因子的筛选,以气温、空气绝对湿度、降水量等9个因子与土壤含水率相关最紧密,每个气象因子按前5天、前10天、前20天三个时段,采用逐步回归方法,建立了阳坡、半阳坡、阴坡的5cm和20cm两个层次土壤含水率与气象因子的回归方程,复相关系数均在0.9以上,平均精度94.7%.  相似文献   

8.
黄土高原南部3种农田土壤剖面坚实度的变化规律   总被引:2,自引:0,他引:2  
为了揭示黄土高原南部地区不同质地类型土壤剖面坚实度的变化及其与土壤含水率的定量关系,以黄墡土、土娄土、裸露在地表的粘化层耕作剖面为研究对象,定位观测其0~45 cm土壤坚实度与含水率的变化。结果表明,黄墡土、土娄土、裸露在地表粘化层耕作剖面的犁底层平均坚实度均大于耕层,犁底层平均坚实度较耕层分别高194.8%,87.3%,10.4%;剖面土壤质地越粘其平均坚实度越大;土壤坚实度与含水率呈负相关关系;土壤坚实度变化速率为0时,以上3种土壤剖面临界含水率分别为0.1712,0.1757,0.1835;质地不同的土壤剖面坚实度时空变化特征有差异,其中黄墡土剖面0~20 cm土层土壤坚实度为350~500 kPa,受土壤含水率变化的影响较小;20~30 cm土层土壤的坚实度为500~1400 kPa,不易受外界环境影响;30 cm以下土层土壤坚实度为700~1600 kPa,受土壤含水率变化影响较大。土娄土剖面0~40 cm土层土壤坚实度为600~1200 kPa,受含水率变化影响较大;40 cm以下土层土壤坚实度稳定在1 800 kPa左右。粘化层剖面0~15 cm土层土壤坚实度在2000 kPa左右,受环境影响较大,15 cm以下土层土壤坚实度稳定在1800 kPa,受含水率变化影响较小。  相似文献   

9.
土壤含水率对长白落叶松幼苗生长的影响   总被引:3,自引:1,他引:2  
为了研究长白落叶松幼苗生长与土壤含水率的关系,掌握长白落叶松苗木生长规律,为育苗管理和相关研究提供借鉴,通过5种田间持水量梯度对幼苗生长指标的影响试验,分析了不同土壤含水率条件下苗木生长指标的变化。结果表明:苗高、地径、主根长、生物量等指标在不同土壤含水率条件下差异显著,大于1 cm长侧根数受土壤含水率的变化差异不大;幼苗生长对土壤含水率需求较高,在田间持水量为90%时,幼苗生长各项指标较优,在田间持水量为80%以上时,增加灌溉量对促进苗木生长影响不大;土壤含水率保持田间持水量的80%左右,苗木生长指标较好,同时又能够达到灌溉节水的目的;在土壤含水率低于田间持水量60%时,苗木正常生长受到显著的影响。  相似文献   

10.
[目的]研究不同灌水定额条件下土壤含水率变化。[方法]在4个田间试验小区布设间距为2m的3个点,使用人工手钻,钻成深度200cm、孔径44.3mm的探管孔。1试验小区不灌水,2试验小区灌水量为0.02999m3/m2,3试验小区灌水量为0.08996m3/m2,4试验小区灌水量为0.05997m3/m2,灌水方法采取畦灌。利用时域反射仪,对不同灌水定额入渗的土壤含水率进行测定。时间上,探测土壤含水率时间为灌水后4、20、28和44h;深度上,探测深度间距分别设为180、160、140、120、100、90、80、70、60、50、40、30、20、10cm。结合土壤质地特性,分析不同灌水定额下的土壤含水率随深度变化的曲线特征。[结果]不同土层深度土壤水分变化因灌溉水量不同而不同。①不灌水时,0~70cm土层土壤含水率为9.88%;70~100cm土层土壤含水率逐渐增大,达17.00%;100~120cm土层含水率达25.00%;120~180cm土层土壤含水率为24.45%。②灌水量为0.02999m3/m2时,0~30cm土层土壤含水率逐渐增大,达30.00%;30~60cm土层土壤含水率逐渐下降,降至25.00%;60~180cm土层土壤含水率为25.00%。该灌水定额适合农田灌溉节约用水。③灌水量为0.05997m3/m2时,0~30cm土层土壤含水率逐渐增大,达26.00%;30~100cm土层土壤含水率为32.50%,120~180cm土层土壤含水率恢复到未灌溉前状态。该灌水定额对农田节水和保墒具有重要意义。④灌水量为0.08996m3/m2时,0~180cm土层土壤含水率为25.86%。该灌水定额不利于农田灌溉节约用水。[结论]该研究结果对经济合理地利用水资源具有重要意义。  相似文献   

11.
半干旱黄土区山地枣林春季土壤水分动态变化研究   总被引:2,自引:0,他引:2  
为明确半干旱黄土区山地枣林土壤水分特征,本文对陕西延川县齐家山红枣试验基地春季土壤水分特征进行了分析。结果表明:1)不同坡向枣树林地土壤水分存在差异,阴坡土壤水分最高,其次为半阳坡,而阳坡最低,且不同坡向不同土层间存在显著差异;不同坡向土壤水分垂直变化趋势相似。2)坡位对枣树林地0~60 cm土层的水分影响较大,且随着土层的增加,坡位对土壤水分的影响逐渐减小直到差异不显著。3)山地枣林0~60 cm土层内,不同整地方式对土壤水分影响较大,且差异显著;但显著性随土层深度增加而降低。4)不同植被类型间土壤水分存在差异。0~40 cm土层,枣树林地土壤水分含量最高,且与苹果园、草地土壤水分差异显著;40~100 cm土层,苹果园土壤含水量最大,且与枣园、草地显著差异。5)研究区3种植被类型0~100 cm土层土壤蓄水量表现为红枣(153.03 mm)苹果园(149.26 mm)草地(98.76 mm),说明林地土壤水分涵蓄能力强,而撂荒草地土壤蓄水能力较弱。因此,研究表明半干旱黄土区进行水平阶整地和合理的经济林营造有助于土壤水分的利用且不会造成土壤水分亏缺,相反进行撂荒则反而会使土壤水分含量降低。  相似文献   

12.
库布齐东段典型人工固沙林土壤水分时空变化特征   总被引:1,自引:0,他引:1  
以库布齐沙漠东段典型人工固沙林(油蒿林、沙柳林、柠条林)为对象,利用TRIME-PICO土壤水分观测系统对2017-2019年生长季迎风坡顶部、中部和底部0~180 cm土层深度土壤含水量进行连续监测,探讨区域植被类型和环境因子对土壤水分时空变化的影响。结果表明,研究区平均土壤含水量年际变化受降雨量影响表现为:2019年(9.7%)>2018年(8.6%)>2017年(4.3%);因植被生长特性差异,土壤含水量表现为:油蒿林(7.9%)>沙柳林(7.8%)>柠条林(6.9%);不同坡位土壤含水量略有差异,油蒿林和柠条林表现为:迎风坡底部>中部>顶部,而沙柳林为:迎风坡底部>顶部>中部;不同样地土壤含水量垂直变化明显,均呈现先减小后缓慢增大的趋势,含水量最大值均出现在浅层(0~40 cm),由于降雨入渗和植被根系分布的不同,最小值在中层和深层均有出现;3种样地土壤水分时间变异系数为0.2~0.4,浅层时间变异性较大,深层较为稳定;土壤水分与垂直变异系数呈负相关。总体上,季节变化和土层深度在时间和空间维度对土壤水分有较大影响,土壤水分和植被生长既相互作用又相互制约。  相似文献   

13.
土壤水分是植被恢复的主要限制因子之一。本文选择拉萨半干旱河谷宜林地7个典型立地类型0~20 cm,20~40 cm,40~60 cm深度的土壤为研究对象,研究其土壤水分的变化规律,探讨拉萨半干旱河谷地区土壤水分时空分布格局。研究结果表明:不同立地类型的土壤水分变化走势大致相同,呈单峰状分布,土壤最低含水量与最高含水量分别出现在1月和8月,其变化范围在2.43%~30.03%之间;土壤含水量由高到低排序为:河滩地高水位阴坡上部阴坡下部河滩地低水位阳坡上部阶地阳坡下部;土壤水分时间格局总体上分为土壤水分积累期(6—9月)、土壤水分消耗期(10月至翌年1月)、土壤水分稳定期(2—5月)3个时期,土壤水分空间分布分为土壤水分速变层(0~20 cm)、土壤水分活跃层(20~40 cm)及土壤水分相对稳定层(40~60 cm)3层。本研究对该区植被建设具有一定的指导意义。   相似文献   

14.
杨耀峰  黄毅  孔祥海 《山西农业科学》2012,40(9):958-960,969
丘陵耕地是辽西地区典型的耕地类型,辽西地区坡耕地分布较广,约占全部耕地的77%。试验对不同坡度、不同坡向、不同茬口进行了墒情监测,结果表明,在同一坡向不同坡度时,土壤含水量由高到低依次为坡下>坡中>坡上,其中,坡上与坡下差异呈显著水平;同一坡度不同坡向时,土壤含水量由高到低依次为阴坡>阳坡,但差异不显著;同一坡度坡向不同茬口时,土壤含水量由高到低依次为谷子>高粱>玉米,其在0~15 cm土层内差异不显著,在15~40 cm土层内差异显著。该地区秋季墒情已达到了春播时的要求,因此,秋季采取保墒措施是完全可行的。  相似文献   

15.
[目的]研究延河流域自然植被与人工植被土壤含水量及其空间变化,为黄土高原土壤水分的利用和人工植被建设提供理论依据。[方法]针对延河流域人工植被建造存在植被退化问题,根据降雨温度变化,将延河流域划分为17个环境梯度单元,对自然植被与人工植被进行了野外调查,研究了降雨梯度、坡位及坡向对植被0~500 cm土层土壤含水量的影响。[结果]流域内土壤水分具有很强的空间变异性。自然植被0~500 cm土壤含水量为8.15%,变异系数为33.12%;人工植被土壤含水量较低,仅6.74%。地形因子能够显著影响自然植被与人工植被的土壤含水量,自然植被不同坡位和坡向的0~500 cm土壤含水量大于人工植被。[结论]综合考虑土壤水分生态环境的可持续性,阴坡下与平地相对适合人工植被的营造,在植被配置时,需要考虑植被类型及耗水特点。  相似文献   

16.
【目的】研究地形因子对天山北坡天山云杉林土壤有机碳的影响。【方法】在新疆农业大学实习林场选取不同海拔、不同坡度和不同坡向的样地采集土壤样品,测定土壤有机碳含量并计算其碳密度。【结果】不同海拔梯度下,天山云杉林土壤有机碳含量介于41.65~77.67 g/kg,土壤有机碳密度介于9.47~14.27 kg/m2,土壤有机碳含量及密度均随着海拔的升高呈减少的趋势。0~20 cm土层坡度小于15°时,土壤有机碳含量表现为最高(105.08 g/kg),而当坡度达到30°~35°时,土壤有机碳含量最低;不同坡向上土壤有机碳含量从高到低依次为阴坡>半阴坡>半阳坡>阳坡,其中0~20 cm土层阴坡上土壤有机碳含量显著高于阳坡(P<0.05),20~60 cm土层土壤有机碳含量在各坡向之间差异不显著。【结论】天山北坡天山云杉林在高海拔区域内整个剖面土壤有机碳含量分布较低海拔区域相对均匀。坡向对土壤有机碳的再分配作用在20~60cm土层土壤中难以发挥作用。  相似文献   

17.
[目的]研究不同条件下昆明海口磷矿山复垦区的土壤含水量,旨在为该地植被复垦提供科学依据。[方法]选择昆明海口磷矿山复垦区为试验区,分别测定不同植被条件下不同土壤深度、不同时间段、不同人为因素影响下以及降雨前后的土壤含水量。[结果]矿山复垦区0~80 cm土层土壤含水量差异不大;下午土壤含水量高于上午;果林土壤含水量高于蔬菜地;未翻耕地土壤含水量高于翻耕地,且翻耕后覆膜的土壤含水量较高;降雨1 d后的土壤含水量较高,降雨后土壤含水量较降雨前高出15%左右。[结论]复垦区土壤含水量与土壤深度、时间段、人为因素、降雨等条件有关。  相似文献   

18.
晋西黄土高原虎榛子根系分布特征   总被引:2,自引:0,他引:2  
采用分层分段挖掘法,对晋西黄土高原虎榛子根系的分布特征进行了研究。结果表明,不同立地的虎榛子根系分布特征具有明显差异性;在半阴坡立地上,无论是疏导性根还是吸收性根,垂直分布深度均明显较半阳坡大;半阳坡虎榛子根系较半阴坡的生物量明显减少。土壤水分状况与不同立地灌木根系分布状况相似,这表明虎榛子对不同生境中土壤含水量变化的适应上表现出差异,这种差异更有利于植物根系对坡地土壤水分的吸收。不同坡向上各剖面的根系分布与根系生物量、根长的分布相似,随着距地面垂直距离的增大,根量减少。根桩上坡方向的根系较下坡方向分布较深,各层分布均匀,根量较多,表明不同坡向上大部分根系以水平根或斜生根的形式向根桩上坡方向发展,这种特点反映了根系在特殊立地条件下的生态可塑性。西北林学院学报24卷  相似文献   

19.
黄土高原丘陵沟壑区坡面果园的土壤水分特征分析   总被引:3,自引:0,他引:3  
以黄土高原丘陵沟壑区坡面果园为对象,通过测定阴坡、阳坡、半阴半阳坡坡面果园不同部位土壤的储水量,分析果园土壤水分空间、时间变异性,以及土壤水分亏缺程度。结果表明,坡面果园0200 cm土壤水分贮量为314.7 mm,低于坡地28.8%;土壤储水量受降水的影响呈现年际波动,同时土壤储水量波动具有明显滞后性。年内土壤水分可划分3个阶段,秋冬季土壤水分缓慢累积阶段,春末夏初土壤水分强烈消耗阶段,夏季土壤水分波动变化阶段。坡向、坡位不同,土壤水分变异很大,土壤水分贮量受降水等因素影响,在每年49月份土壤水分贮量低于适宜田间持水量。西北林学院学报21卷第5期王 健等黄土高原丘陵沟壑区坡面果园的土壤水分特征分析  相似文献   

20.
从坡面尺度对大兴安岭北部多年冻土区天然落叶松林的土壤水分空间变异特征以及冠层结构、土壤温度、降 雨对土壤水分分布的影响进行了研究。结果表明:自坡上至坡下,0 ~5 cm 土层土壤含水量逐渐降低,样带12 比样 带1 降低了19.95%,5 ~10 cm 和10 ~15 cm 土层土壤含水量随坡位的降低而逐渐升高,从样带1 至样带12 分别增 加15.55%和29.16%;0 ~15 cm 土层土壤平均含水量在17.61% ~18.77%之间波动,从坡上至坡下有逐渐增大的 趋势;坡上和坡下样带垂直变异系数明显高于坡中,样带1、11 及12 的垂直变异系数最高,分别为10.17%、 13.39%及15.02%,属于中等变异程度,而各样带间的水平变异程度很弱;0 ~5 cm 土层土壤含水量与叶面积指数 和林冠开度分别呈极显著正相关和极显著负相关关系,5 ~10 cm 和10 ~15 cm 土层土壤含水量与叶面积指数呈极 显著负相关关系,而与林冠开度相关性不显著;土壤温度与土壤含水量呈极显著负相关;雨后4 d 内,各样带土壤含 水量均逐渐降低,表层土壤含水量降幅明显大于下层,说明降雨对表层土壤水分影响较大,而对下层土壤水分影响 较小。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号