首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以狗牙根品种C299为材料,采用RACE方法从干旱处理的C299中获得1个脱水素基因DHNS。其核酸序列长度为495bp,编码164个氨基酸;氨基酸序列具有明显的脱水素类蛋白特征,由2个K片段、1个S片段和1个Y片段组成,属于YSK2型脱水素;蛋白结构分析结果显示,其为典型的无序蛋白。在E.coli和拟南芥中超表达脱水素基因DHNS,干旱、盐胁迫、高渗胁迫和酸碱的环境下转基因E.coli和拟南芥的生长速度均显著高于对照,宿主菌和拟南芥的抗逆能力显著增强。  相似文献   

2.
采用盆栽法研究不同浓度NaCl(0,50,100,150,200,250,300 mmol·L^(-1))胁迫对扁蓿豆(Melilotoides uthenica)苗期生长及生理指标的影响。结果表明:相同胁迫天数下,随盐浓度的升高扁蓿豆株高、叶面积、茎粗均呈降低趋势,根冠比呈增大趋势。胁迫第14.21和28 d,150~300 mmol·L^(-1)浓度下株高显著低于对照(P<0.05);300 mmol·L^(-1)浓度下,叶面积、茎粗均显著低于对照(P<0.05),根冠比显著大于对照及其他各浓度处理(P<0.05)。即盐胁迫下,扁蓿豆各生长部位对盐敏感性不同。扁蓿豆叶绿素、丙二醛(MDA)、叶片相对水分含量和相对电导率在不同胁迫时期,不同盐浓度影响有差异。胁迫第14 d时200~300 mmol·L^(-1)浓度处理、胁迫第21d和28 d时100~300 mmol·L^(-1)浓度处理均使扁蓿豆MDA含量显著高于对照(P<0.05);胁迫第14 d时250~300 mmol·L^(-1)浓度处理、胁迫第21 d时200~300 mmol·L^(-1)浓度处理、胁迫第28 d时150~300 mmol·L^(-1)浓度处理均使其叶片相对水分含量显著低于对照和其他浓度处理(P<0.05)。可见,随着胁迫时间的延长,抑制扁蓿豆幼苗生长的临界盐浓度值在减小,即盐胁迫对扁蓿豆幼苗的抑制程度与盐浓度、胁迫时间成正比。  相似文献   

3.
采用盆栽法研究不同浓度NaCl(0, 50, 100, 150, 200, 250, 300 mmol/L)胁迫对扁蓿豆苗期有机渗透调节物质及光合参数的影响。结果表明,相同胁迫天数下,随盐浓度的升高。扁蓿豆可溶性蛋白含量、可溶性糖含量呈降低趋势,脯氨酸含量呈升高趋势。各个观测期和浓度之间存在差异,胁迫第7 和14天,300 mmol/L浓度下可溶性蛋白含量显著低于对照(P<0.05);胁迫第7,14和21天,50~100 mmol/L浓度下,可溶性糖含量明显高于对照,但胁迫第28天,250~300 mmol/L浓度处理显著低于对照(P<0.05)。胁迫第7天,150~300 mmol/L浓度处理、胁迫第14天,200~300 mmol/L浓度处理、胁迫第21天,250~300 mmol/L浓度处理扁蓿豆脯氨酸含量均分别显著高于对照及其他处理(P<0.05)。可见,盐胁迫下,扁蓿豆产生的3 种渗透调节物质调节方式不同,盐胁迫对扁蓿豆幼苗的抑制程度与盐浓度、胁迫时间呈正比。不同的胁迫浓度和胁迫时间,扁蓿豆3 个观测期光合参数变化不尽相同。胁迫第14天,叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)随盐浓度的升高呈先上升后降低的趋势。50~100 mmol/L浓度处理Pn、Tr和Gs显著高于对照,但300 mmol/L浓度处理Pn和Tr显著低于对照及其他处理(P<0.05)。胁迫第28天,4 个光合参数随盐浓度的升高而降低。叶片气孔限制值(Ls)和水分利用效率(WUE)在胁迫14 和28 d时,变化规律一致,随盐浓度的升高呈上升趋势。  相似文献   

4.
采用盆栽法研究不同浓度NaCl(0, 50, 100, 150, 200, 250, 300 mmol·L-1)胁迫对扁蓿豆(Melilotoides ruthenica)苗期生长及生理指标的影响。结果表明:相同胁迫天数下,随盐浓度的升高扁蓿豆株高、叶面积、茎粗均呈降低趋势,根冠比呈增大趋势。胁迫第14,21和28 d,150~300 mmol·L-1浓度下株高显著低于对照(P<0.05);300 mmol·L-1浓度下,叶面积、茎粗均显著低于对照(P<0.05),根冠比显著大于对照及其他各浓度处理(P<0.05)。即盐胁迫下,扁蓿豆各生长部位对盐敏感性不同。扁蓿豆叶绿素、丙二醛(MDA)、叶片相对水分含量和相对电导率在不同胁迫时期,不同盐浓度影响有差异。胁迫第14 d时200~300 mmol·L-1浓度处理、胁迫第21 d和28 d时100~300 mmol·L-1浓度处理均使扁蓿豆MDA含量显著高于对照(P<0.05);胁迫第14 d时250~300 mmol·L-1浓度处理、胁迫第21 d时200~300 mmol·L-1浓度处理、胁迫第28 d时150~300 mmol·L-1浓度处理均使其叶片相对水分含量显著低于对照和其他浓度处理(P<0.05)。可见,随着胁迫时间的延长,抑制扁蓿豆幼苗生长的临界盐浓度值在减小,即盐胁迫对扁蓿豆幼苗的抑制程度与盐浓度、胁迫时间成正比。  相似文献   

5.
张楠  张林生  邢媛  刘兰  李嘉宏 《草地学报》2012,20(1):139-145
扁穗冰草(Agropyron cristatum(L.)Gaertn)生长于干旱、半干旱地区,具有耐旱、耐寒、抗病等特性。采用RT-PCR技术从扁穗冰草叶片中克隆3个脱水素基因Acwcor410,Acwzy2和Acwcs120)和1个肌动蛋白β-actin基因(Acβ-actin)。半定量RT-PCR分析表明,Acwcor410基因对温度敏感,对干旱胁迫不敏感;Acwzy2基因对温度不敏感,而对干旱胁迫敏感;Acwcs120基因则对冷胁迫及干旱胁迫均有响应。Western blot表明,扁穗冰草含有40kD脱水素,该蛋白的表达随冷胁迫和干旱胁迫程度的变化而变化,对干旱胁迫的响应比冷胁迫更为明显,推测该脱水素属于干旱敏感型。  相似文献   

6.
为探寻调控扁蓿豆种子萌发期耐盐能力的途径,采用NO供体硝普钠(SNP)处理扁蓿豆种子,研究了盐胁迫下外源NO对扁蓿豆种子萌发和幼苗生长的影响。结果表明,150mmol/L的NaCl溶液显著抑制了扁蓿豆种子的萌发,显著降低了发芽率、发芽指数和幼苗长度。外源NO在一定程度上缓解了盐胁迫对扁蓿豆幼苗的发芽率、发芽指数、芽长和根长的影响,但也存在浓度效应,以0.05%处理为最佳。0.05%SNP+150mmol/L NaCl处理下的扁蓿豆种子发芽率为86%,显著高于单盐处理的(0%SNP+150mmol/L NaCl)(P0.05)。0.05%SNP+150mmol/L NaCl处理下的发芽率、芽长和根长与0mmol/L NaCl溶液处理差异不显著(P0.05),发芽指数显著高于后者(P0.05)。  相似文献   

7.
8.
9.
钟华  董洁  董宽虎 《草业学报》2018,27(4):189-194
以野生扁蓿豆为试验材料,采用盆栽试验方法研究不同盐(NaCl、Na2CO3)的不同浓度(0、50、100、200、300、400、500 mmol·L-1)胁迫对扁蓿豆苗期脯氨酸积累及其代谢途径的关键酶活性的影响。结果表明,在不同盐胁迫下,扁蓿豆脯氨酸(Pro)含量、吡咯啉-5-羧酸合成酶(P5CS)活性、鸟氨酸-δ氨基转移酶(δ-OAT)活性均随盐浓度的升高而逐渐增加,而脯氨酸脱氢酶(ProDH)活性随胁迫浓度的升高而降低。扁蓿豆幼苗主动积累Pro是缓解其NaCl和Na2CO3胁迫的原因,并由Glu途径和Orn途径协同作用于Pro积累,但以Orn途径为主。试验中,扁蓿豆所承受的NaCl和Na2CO3浓度不宜超过400 mmol·L-1。  相似文献   

10.
扁蓿豆不同品系种子发芽期耐盐性鉴定   总被引:4,自引:2,他引:2  
在盐分胁迫下,以黄花苜蓿为对照,探讨扁蓿豆4个品系种子发芽期耐盐性差异.依据种子发芽率、相对发芽率、发芽势、活力指数和半致死浓度来看,扁蓿豆种质材料在种子发芽期的抗盐性高于黄花苜蓿,扁蓿豆4个品系的耐盐性强弱顺序为:品系90-36>93-21>00-61>00-81;其半致死浓度分别为:2.16%、1.1%、0.96%、0.86%.  相似文献   

11.
内蒙古中东部野生扁蓿豆种子硬实性的研究   总被引:1,自引:0,他引:1  
扁蓿豆是抗逆性极强的优良牧草,但其种子发芽率低,具有65 %~75 %的硬实。在恒温25℃时发芽率较高,在变温20 ~30℃时发芽率最高,若温度超过30℃或低于15℃时发芽被抑制,但短时间高温处理有利于促进发芽。采用机械或浓硫酸处理,发芽率分别比对照高40.6 %和45.6 %。野生种子的硬实率与采集地气温,特别是与7月份温度有着很高的正相关关系,而且不同产地的种子表现出较大的差异,以赤峰市北部采到的居群硬实率最高,比呼和浩特市采集的居群高9 %。随着储藏年限的推移,种子的硬实率不断下降,发芽率增加,储藏3.5年的种子发芽率达到了67.0 %,表明扁蓿豆种子采集后通过室温储藏可以达到提高发芽率的效果。  相似文献   

12.
本文旨在构建抗菌肽parasinⅠ大肠杆菌重组表达载体,表达人工重组parasinⅠ,并检测其抑菌活性。根据parasinⅠ的成熟肽序列和大肠杆菌密码子偏好性,人工合成1段57 bp的基因编码cDNA,通过PCR技术构建大肠杆菌重组表达质粒pET32-ParaⅠ,并在parasinⅠ基因5’-端引入Xa因子酶切位点。重组载体转化大肠杆菌Rosetta(DE3)菌株后,在不同温度(37和20℃)条件下对阳性转化子进行异丙基硫代半乳糖苷(IPTG)诱导表达。结果表明:IPTG成功诱导了1个21 ku的融合蛋白表达,重组蛋白占菌体总蛋白质的45%~50%。在低温条件下产生的融合蛋白主要以可溶性形式存在。可溶性重组蛋白经亲和层析纯化后,用Χa因子进行酶切,酶切产物经琼脂孔扩散法抑菌活性检测,结果显示其对金黄色葡萄球菌有一定抑制作用。本试验实现了parasinⅠ的重组表达,表达产物经Χa因子酶切后具抑菌活性。  相似文献   

13.
脱水素是受细胞失水相关环境诱导表达的一类蛋白家族。所有的脱水素都含有保守的K片段,这段保守序列可以形成两亲性的α-螺旋,这种结构在脱水素发挥功能中起主要作用。小麦WZY2-1基因含有9个K片段,属于K9型的脱水素,能够被低温、干旱和盐胁迫诱导表达。在本实验中,纯化了WZY2-1蛋白,通过体外LDH酶保护实验发现,WZY2-1蛋白具有保护LDH酶活性的功能。通过亚细胞定位分析发现,WZY2-1蛋白主要定位于细胞核和细胞膜。为了进一步说明WZY2-1基因的功能,获得了转WZY2-1基因的拟南芥植株,通过干旱胁迫条件下转基因植株的生理指标和表型分析,发现转WZY2-1基因的拟南芥植株具有较强的抗旱能力。因此,推测小麦WZY2-1基因在植物干旱胁迫条件下具有重要功能。  相似文献   

14.
芽孢杆菌中性植酸酶基因的原核表达及酶学性质分析   总被引:1,自引:0,他引:1  
植酸酶作为饲料添加剂能够有效提高动物对饲料中磷的利用率及减少粪便中磷排放对环境的污染,并降低植酸的抗营养作用。为了获得性能稳定的高活性植酸酶,采用PCR扩增芽孢杆菌(Bacillus sp.)中性植酸酶基因phyC(GenBank登录号:FJ986327)的成熟肽编码序列,将其克隆进原核表达载体pET-28a(+),并转化E.coli BL21(DE3)进行表达。在37℃条件下以0.5 mmol/L IPTG诱导4 h能够获得大量包涵体蛋白,在25℃条件下以0.5 mmol/L IPTG诱导6 h有利于可溶性蛋白的获得。利用Ni-NTA亲和层析柱纯化重组植酸酶产物,获得的中性植酸酶的部分酶学特性为:耐热性较好,最适反应温度55℃,在70℃处理10 min可保持20%以上的酶活性;耐酸、碱能力较强,最适pH 6.0~7.0,pH 5.5~9.0时能保持80%以上的酶活性,pH 5.0~10.0时处理60 min仍能保持70%以上的酶活性,在pH 2.0~4.0时能保持40%以上的酶活性。利用构建的切除芽孢杆菌中性植酸酶基因phyC信号肽编码序列的原核表达载体及优化的诱导表达条件,能够在大肠杆菌中高量表达性能稳定的芽孢杆菌中性植酸酶。  相似文献   

15.
盐碱及变温条件对花苜蓿种子发芽的影响   总被引:5,自引:0,他引:5  
用3个变温处理(10/20℃,15/25℃,20/30℃)、6个浓度盐处理(盐为NaCl,浓度为0、50mmol/L、100mmol/L、150mmol/L、200mmol/L、250mmol/L)和碱处理(碱为Na2CO3,浓度为0、5mmol/L、10mmol/L、15mmol/L、20mmol/L、25mmol/L)研究盐、碱以及盐碱与温度的交互作用对两种不同来源花苜蓿种子萌发的影响。结果表明:随着盐、碱浓度的升高,种子发芽率、发芽速度均显著降低。低浓度盐、碱条件下,温度对花苜蓿种子发芽影响不显著;但在较高浓度的盐、碱条件下,不同温度处理对种子发芽率和发芽速度的影响差异显著;最适发芽温度为15/25℃。随着盐浓度升高,花苜蓿种子胚根长度逐渐减小,但胚轴长度没有明显变化;在一定浓度Na2CO3胁迫下花苜蓿能正常发芽,当Na2CO3浓度为15mmol/L(pH=10.95)时,两种花苜蓿发芽率均高于60%。两种花苜蓿相比较,林下花苜蓿抗盐碱性高于草甸花苜蓿。  相似文献   

16.
新孢子虫NcSRS2基因的亚克隆和表达   总被引:1,自引:0,他引:1  
本研究根据NcSRS2基因序列设计合成一对引物,将上、下游引物分别引入EcoRI,XhoI酶切位点,用PCR技术从pGEX-NcSRS2重组质粒扩增截去N端疏水氨基酸序列NcSRS2的基因片段(以下称dNcSRS2),插入到pGEX-6p-1质粒的多克隆位点,转化大肠杆菌BL21感受态细胞,于氨苄阳性LB培养平板上筛选阳性克隆,酶切及PCR鉴定;经IPTG诱导在E.coli中表达,用SDS-PAGE和免疫印迹分析表达产物并纯化.结果表明,新孢子虫dNcSRS2基因体外扩增产物与预期值相符,约1041bp;所构建pGEX-dNcSRS2重组质粒经双酶切与PCR鉴定,与预期结果一致;SDS-PAGE和免疫印迹显示,表达融合蛋白的分子量约为62.6 kD,表达效率为32.3%,该蛋白具有特异的免疫反应性,为新孢子虫病诊断试剂盒的研制和疫苗的研制奠定了基础.  相似文献   

17.
根据GenBank登陆的单增李斯特菌标准株EGD序列设计引物,PCR扩增LM01847基因片段后插入表达载体pET-30 a,构建重组原核表达载体,并在E. coliBL21中成功表达。纯化目的蛋白制备多抗,ELISA结果显示:该蛋白多抗与单增李斯特菌全菌、全菌多抗与该蛋白均可发生反应。证明该蛋白在天然状态下存在于单增李斯特菌表面,且具有良好的免疫反应性。该蛋白在45℃、高盐、酸性环境中表达水平基本稳定,但在低pH值条件下反应活性消失;高盐或低温条件下,表达量随盐浓度的升高或温度的下降而降低。除4℃以外,该蛋白均能保持良好的免疫反应活性。本研究为建立针对该蛋白的李斯特菌免疫微球凝集、免疫磁珠分离等检测方法奠定基础。  相似文献   

18.
家蚕抗菌肽Cecropin-XJ的原核优化表达及活性检测   总被引:1,自引:0,他引:1  
Cecropin-XJ是一种从家蚕幼虫体内分离纯化的具有很强热稳定性、酸碱适应性和广谱抗菌性的新型家蚕抗菌肽。以融合不同标签的表达载体构建pET28a-Cecropin-XJ、pET30a-Cecropin-XJ、pET32a-Cecropin-XJ、pMAL-p2X-Cecropin-XJ重组质粒,转化E.coli BL21(DE3)感受态细胞,并优化诱导时间、诱导温度、诱导剂IPTG浓度等条件,通过对目的蛋白表达的检测分析,选择、建立Cecropin-XJ在大肠杆菌中高效、可溶性表达的技术体系。试验结果表明:采用构建的重组原核表达载体pET32a-Cecropin-XJ在IPTG终浓度为0.8 mmol/L、培养温度为37℃的条件下诱导5 h,目的蛋白的表达量可达10 mg/L,重组蛋白主要以可溶性表达产物形式存在,可溶性蛋白的表达量约占菌体总蛋白的35%,经金属螯合层析进一步纯化后的Cecropin-XJ融合蛋白纯度可达90%以上。体外抑菌试验显示Cecropin-XJ融合蛋白对金黄色葡萄球菌具有较强的抑菌活性。  相似文献   

19.
试验旨在优化新型鸭呼肠孤病毒(new-type duck reovirus,NDRV)XX株σB蛋白的原核表达系统,并评价sσB蛋白的免疫原性。根据已测得的NDRV-XX的σB蛋白基因序列,在不改变氨基酸序列的前提下,按照大肠杆菌密码子偏好性对σB蛋白全基因进行优化、合成并连接至pET-32a(+)质粒中,构建原核表达重组质粒pET-32a(+)-sσB,转化大肠杆菌BL21(DE3)菌株,经IPTG诱导表达并优化表达条件。SDS-PAGE结果显示,最佳诱导表达时间、温度及IPTG浓度分别为3 h、32℃和0.25 mmol/L;可溶性分析结果表明,重组蛋白主要以包涵体形式存在于菌体中。表达菌经超声破碎、变性、复性和Ni2+柱亲和层析后,得到纯度高于90%的sσB可溶性蛋白,sσB重组蛋白在大肠杆菌BL21(DE3)菌株上的表达量较σB蛋白提升了14.6%,前者占细菌总蛋白量的32.3%。Western blotting结果显示,sσB重组蛋白具备NDRV抗原免疫反应原性。本试验成功构建并优化了NDRV-XX株σB蛋白的原核表达系统,提高了σB蛋白的表达量,并获得具有良好NDRV抗原免疫反应原性的σB重组蛋白,为后续NDRV σB蛋白功能及其应用的深入研究、基因工程疫苗的研发奠定了基础。  相似文献   

20.
本试验旨在研究自筛解淀粉芽孢杆菌DHN04的生长曲线、人工胃肠液、pH及猪胆盐耐受性,并研究其抑菌特性及抗生素敏感性。试验采用生长速率法测定该菌生长曲线,活菌计数法测定人工胃肠液耐受性、耐酸性和耐胆盐等特性,牛津杯法测定抑菌活性,药敏试片测定抗生素敏感性。结果表明,解淀粉芽孢杆菌DHN04在经过4~6 h的缓慢生长期后,进入对数生长期,12~24 h为该菌的稳定生长期;在人工胃液和人工肠液中保持3 h后存活率分别为55.55%和53.33%;pH 2.0时该菌存活率为14.14%,随着酸性的减弱,存活率逐渐上升,在pH 7.0时存活率可以达到93.85%;随着胆盐浓度增加,解淀粉芽孢杆菌的存活率逐渐下降,相同的胆盐浓度,24 h的存活率低于3 h。解淀粉芽孢杆菌对大肠杆菌、沙门氏菌、金黄色葡萄球菌及四联球菌均具有一定的抑制作用;对抗生素阿莫西林耐药。综上,解淀粉芽孢杆菌能够快速活化,对人工胃肠液、胆盐及pH的耐受性良好,对大肠杆菌、沙门氏菌和金黄色葡萄球菌等具有一定的抑制作用,对阿莫西林耐药。因此,解淀粉芽孢杆菌DHN04可作为一种潜在的益生菌菌株应用于畜禽养殖生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号