首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
基础科学   1篇
  3篇
综合类   3篇
畜牧兽医   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1974年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
For corn crops on soils with fine texture in eastern Canada, research has been ongoing on the relationships between corn grain yields and management practice, soil strength/compaction, and soil nutrient status. However, these variables can operate in a complex manner that may not be detectable via uni-structural models. This study used regression-tree analysis, in an exploratory context, to model corn grain yields over a relatively flat clay to silty loam field on the basis of several soil physical, soil nitrate, and management variables. It was found that corn grain yields were first subdivided by length of time under corn production (1st and 3rd year corn groups). These yield groups were further subdivided by cone penetration resistance, elevation, soil nitrate, and soil texture information. Generally, higher corn grain yields were associated with 1st year corn, lower relative soil strength/compaction, and higher post-growing season soil nitrate levels. The modeled results helped to identify equifinality, context dependent relationships, and spatial continuity in inferred formative mechanisms; issues important in many field and/or landscape studies of spatial processes.  相似文献   
3.
Measurements of mouldboard plow draft can potentially provide a useful tool for continuously mapping, as a surrogate variable, crop limiting soil properties such as soil strength/compaction. Numerous researchers have shown that loading on tillage tools can be periodic. One source of higher frequency periodic loading has been related to failure modes in the soil. Lower frequency periodic loading on tillage tools, assuming tillage depth is relatively constant, more often reflects local spatial variability in soil physical properties such as soil moisture, soil texture, organic matter, and/or soil strength/compaction. This study presents a spectrum and cross-spectrum analysis of mouldboard draft recorded during normal fall plowing operations along adjacent transects. One objective of this study was to determine the dominant periodic components in order to elucidate meaningful frequencies which might be better related to variation in soil physical properties. Spectral densities were generally dominated by signals with a few cycles per 300-m transect. The cross-amplitude and squared coherency between draft recorded on adjacent transects provided further indication of the frequencies which characterized the signals because they provide an indication of correlation as a function of frequency. Spatial dependence in the data was quantified using spatial autocorrelation and cross-correlation. An additional objective was to use the spectral information to help design more physically meaningful filters for the raw draft data. Taking the Fast Fourier Transform of the raw draft data and filtering in the frequency domain using an optimal filter informed via the spectrum and cross-spectrum analysis, provided a convenient method for isolating a more physically meaningful signal.  相似文献   
4.
The primary objective of this investigation was to evaluate some potential causal associations between draft derived from a 3-bottom mouldboard plow during normal fall field operations and soil-crop properties at a field site near Winchester, Ontario, Canada. A secondary objective was to investigate, in a preliminary manner, associations between draft and crop yield (corn, soybean, and wheat). Regression tree analysis indicated that draft variability was best explained by field location, crop type, soil cone penetration resistance in the plow layer, and soil texture in the plow layer. Draft was found to generally increase with cone penetration resistance in the plow layer and soil clay content. Corn yields were negatively associated with draft. The reverse was true for the soybean yields, and a combination of negative and positive draft vs. yield relationships existed for the wheat plots. The overall results indicated that draft data collected during normal field operations can be useful for producers interested in identifying areas in the field where soil strength/compaction might be problematic with regard to crop yields.  相似文献   
5.
The least limiting water range (LLWR) attempts to incorporate crop-limiting values of soil strength, aeration, and water supply to plant roots into one effective parameter (on the basis of soil water content). The LLWR can be a useful indicator of soil quality and soil physical constraints on crop production. This study focused on assessing dynamic cultivation zone LLWR parameters between different cropping/tillage/trafficked clay loam plots at Winchester, Ont., to identify potential management impact on surficial soil physical conditions for contrasting growing seasons. This study also evaluated dynamic cultivation layer LLWR variables as indicators of corn (Zea mays L.) plant establishment and corn yield. The results suggest that no-till soils had lower average air-filled porosities (AFP) and O2 concentrations than respectively managed tilled plots for both years of study. Potential trafficking effects on aeration properties were most evident in no-till relative to till; preferentially trafficked no-tilled plots had lower AFP and O2 concentrations than respective non-preferentially trafficked no-till plots for both years of study. Corn establishment and yield variability were principally explained by cumulative differences between daily AFP and aeration threshold values, and the cumulative number of days daily AFP was below an AFP aeration threshold for specific corn growth stage periods. Lower AFP was linked to lower yields and plant establishments. Soil strength, as measured by cone penetration resistance, was important over certain sites, but not as important globally as AFP in predicting crop properties. Overall, conventional tilled soils that were not preferentially trafficked had most favorable aeration properties, and subsequently, greatest corn populations and yields. No-till soils were at greater risk of aeration limiting conditions, especially those in continuous corn and preferentially trafficked.  相似文献   
6.
Controlled tile drainage (CTD) is a management practice designed to retain water and nutrients in the field for crop use. CTD has shown promise for improving water quality and augmenting crop yields but findings are often restricted to field and plot scales. Remote sensing is one of the alternatives to evaluate crop responsiveness to CTD at large spatial scales. This study compared normalized and green normalized difference vegetation indices (NDVI and GNDVI) for corn (Zea mays L.) and soybean (Glycine max L.) among CTD and uncontrolled tile drainage (UCTD) fields in a ∼950 ha experimental watershed setting in Ontario, Canada from 2005 to 2008. The indices were derived from Landsat-5 and SPOT-4 satellite imagery. Log-transformed NDVI and GNDVI for soybean (R3-R6 growth stage) and corn (VT to R5-R6 growth stage) crops were higher significantly (p ≤ 0.05) for CTD, relative to UCTD for 50% (soybean) and 72% (corn) of both the log-transformed NDVI and GNDVI image acquisitions compared; only 17% and 13% were significant (p ≤ 0.05) in the reverse direction (UCTD > CTD). Log-transformed NDVI and GNDVI standard errors for CTD, relative to UCTD fields, were lower for 65% of the significant corn and 71% of the significant soybean NDVI and GNDVI comparisons for the growth stages noted above. This finding suggested overall more uniform crop growth for CTD fields relative to UCTD fields. Observed yields from a subset of commonly managed CTD and UCTD fields in the study area were not significantly different from each other (p > 0.05) with respect to tile drainage management practice; however, 87% of these paired yield comparisons indicated that CTD mean corn/soybean grain yields were greater than or equal to those for UCTD. On average, CTD observed corn and soybean grain yields were 3% and 4%, respectively, greater than those from UCTD. From observed yield and NDVI and GNDVI observations, vegetation indices vs. yield linear regression models were developed to predict grain yields over a broader land base in the experimental watershed area. Here, predicted mean yields were 0.1-11% higher for CTD corn and −5% to 4% higher for CTD soybean, relative to UCTD crops; but results varied between manured and non-manured fertilizer practices. Eighty-nine percent of the standard deviations for these yield predictions were lower for CTD relative to UCTD. The results of this study indicate that at a minimum, CTD did not adversely impact corn and soybean grain yields over the time span and field environments of the study, and based on the weight of evidence presented here, CTD shows general promise for augmenting crop performance. Finally, remote sensing derived vegetation indices such as NDVI and GNDVI can be used to assess the impact of agricultural drainage management practices on crop response and production properties.  相似文献   
7.
Single-molecule DNA sequencing of a viral genome   总被引:4,自引:0,他引:4  
The full promise of human genomics will be realized only when the genomes of thousands of individuals can be sequenced for comparative analysis. A reference sequence enables the use of short read length. We report an amplification-free method for determining the nucleotide sequence of more than 280,000 individual DNA molecules simultaneously. A DNA polymerase adds labeled nucleotides to surface-immobilized primer-template duplexes in stepwise fashion, and the asynchronous growth of individual DNA molecules was monitored by fluorescence imaging. Read lengths of >25 bases and equivalent phred software program quality scores approaching 30 were achieved. We used this method to sequence the M13 virus to an average depth of >150x and with 100% coverage; thus, we resequenced the M13 genome with high-sensitivity mutation detection. This demonstrates a strategy for high-throughput low-cost resequencing.  相似文献   
8.
Tillage action associated with liquid slurry application systems/management practices can modify soil infiltration properties. The degree or nature of such modification will depend largely on the type of tillage implement used, and the soil conditions at time of tillage activity. The specific objective of this study is to evaluate differences in soil infiltration properties, as measured using pressure infiltrometers and Guelph permeameters, resulting from the immediate tine action of two commonly used slurry application tillage implements (Kongskilde Vibro-Flex (S-tine) and the AerWay SSD (rolling aerator-type tine)) over a variety of silt–clay loam soil water content conditions. The results indicated that there were consistent negative correlations between field saturated hydraulic conductivity and soil water content for all tine-disturbed and undisturbed soil treatments. For Kongskilde, field-saturated hydraulic conductivity was, on average, lower in tine-influenced furrow bottoms, relative to those measured in undisturbed conditions at similar depths for most water content conditions. Generally, the Kongskilde tine-action reduced macropore-based infiltration in the bottom of the furrow for most soil conditions, albeit, this effect was most pronounced at the higher soil water contents. For AerWay, the tine-disturbed soils had generally higher field saturated hydraulic conductivities than undisturbed soil treatments over the observed water content range. This effect was manifested to a greater degree at higher, relative to lower observed water contents.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号