首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   12篇
林业   10篇
农学   2篇
  21篇
综合类   6篇
农作物   3篇
水产渔业   6篇
畜牧兽医   56篇
园艺   2篇
植物保护   14篇
  2023年   6篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   11篇
  2011年   13篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  1976年   1篇
排序方式: 共有120条查询结果,搜索用时 46 毫秒
1.
2.
At present, little is known about the mechanisms responsible for intestinal absorption of anthocyanins (ACNs). For example, it has not yet been established if ACNs are absorbed through an active transport mechanism, such as the sodium-dependent glucose transporter (SGLT1), or by passive diffusion. Previously, we found that the absorption of ACNs differs between regions of the digestive tract and is maximal in the jejunum, suggesting that an active transport mechanism is involved. In the present study, we examined the effect of d-glucose (main substrate of SGLT1), phloridzin (inhibitor of SGLT1), and quercetin-3-glucose (Q3G, a flavonol) on the absorption of cyanidin-3-glucoside (C3G; approximately 5 micromol/L) by mouse jejunum mounted in Ussing chambers. We found that the presence of either D-glucose (10, 20, and 40 mmol/L) or phloridzin (50, 100, and 200 micromol/L) resulted in a small but insignificant inhibition of C3G disappearance from the mucosal solution (decrease of disappearance with glucose, 33%; with phloridzin, 18%; NS). However, when the flavonol Q3G (50 micromol/L) was added to the mucosal solution together with the C3G, the disappearance of C3G was significantly decreased (74%; p < 0.001), and Q3G disappeared instead. In addition, we found phloretin and quercetin, the aglycones of phloridzin and Q3G, respectively, present in the mucosal solution and tissue extracts, indicating hydrolysis of these compounds by the enterocytes of the jejunum. In contrast, the aglycone cyanidin was not detected at all. Our results show that in the mouse small intestine, ACN absorption is not solely dependent on the activity of the SGLT1 transporter, as d-glucose and phloridzin had only a slight effect on uptake. Q3G, however, clearly inhibited C3G disappearance. These results suggest that there might be a competitive inhibition between C3G and Q3G absorption. It is possible that an absorption mechanism other than the SGLT1 is involved, which has a structural preference toward flavonols.  相似文献   
3.
4.
Winfried Schröder  Stefan Nickel  Simon Schönrock  Roman Schmalfuß  Werner Wosniok  Michaela Meyer  Harry Harmens  Marina V. Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Oleg Blum  Alejo Carballeira  Maria Dam  Helena Danielsson  Ludwig De Temmermann  Anatoly M. Dunaev  Barbara Godzik  Katrin Hoydal  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Jussi Lindroos  Siiri Liiv  Sigurður H. Magnússon  Blanka Mankovska  Encarnación Núñez-Olivera  Juha Piispanen  Jarmo Poikolainen  Ion V. Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko Špirić  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Ivan Suchara  Lotti Thöni  Hilde Thelle Uggerud  Harald G. Zechmeister 《Annals of Forest Science》2017,74(2):31

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.
  相似文献   
5.
Irritant threshold concentration (ITC) for intradermal testing (IDT) was determined in 31 healthy, clinically nonallergic dogs. Twenty‐three allergens were tested at five variable concentrations ranging from 1000 to 8000 PNU/mL. To distinguish irritant reactions from subclinical IgE‐mediated hypersensitivities, serum allergy testing was performed. ITCs were determined by evaluating the lowest concentration to which no dogs (0% cut‐off) and to which at least 10% of dogs (≥10% cut‐off) reacted. ITCs at the 0% cut‐off were: 1000 PNU/mL (Johnson grass), 2000 PNU/mL (Ash, Lamb’s Quarter and Bermuda), 3000 PNU/mL (Bahia, Rye, Pig Weed and Virginia Oak), 4000 PNU/mL (Marsh Elder and Maple), 5000 PNU/mL (Sorrel sheep) and 7000 PNU/mL (Cocklebur and Black Willow). ITC for Dog Fennel, Box Elder and Red Cedar was <1000 PNU/mL. ITCs at the ≥10% cut‐off were: 2500 PNU/mL (Johnson), 3000 PNU/mL (Box Elder), 5000 PNU/mL (Bahia), 6000 PNU/mL (Pigweed and Marsh Elder) and 8000 PNU/mL (Virginia Oak and Black Willow). For all other allergens, the ITC was >8000 PNU/mL and could not be determined. No significant agreement between positive values was found for the same allergen on IDT and serum allergy testing for each dog suggesting reactions caused by the determined ITCs are less likely subclinical IgE‐mediated reactions. These results suggest that ITCs may vary, also they may be very high for the allergens tested and that higher test concentrations may be used for IDT for the tested allergens without inducing an irritant reaction. Further studies are needed to evaluate the benefit of higher IDT concentrations in atopic dogs.  相似文献   
6.
We investigated survival and growth responses of planted and advance natural regeneration species of varying shade tolerance to partial retention harvesting in moist warm Interior Cedar-Hemlock (ICHmw2) and dry cool Montane Spruce (MSdk) ecosystems of southeastern British Columbia, Canada. Treatments included three levels of overstory basal area retention (none, light (∼25%), or heavy (∼50%)) installed by two harvest methods (handfelled or a pushover falling technique being tested for its ability to control the spread of root disease). After 10 years, growth of both planted and natural regeneration species of varying shade tolerance tended to increase with decreasing overstory retention and associated increases in light availability. In contrast, significant survival responses to retention level were lacking except in the case of shade-intolerant western larch. Harvest method had a variable effect on regeneration survival and growth. Where significant responses did occur, they were generally attributed to harvesting effects on the characteristics of planting microsites rather than root disease spread. Natural regeneration densities at the ICHmw2 site were high at all retention levels, whereas stocking was less consistent at the MSdk site. We concluded that moderately shade-tolerant to shade-tolerant interior spruce and western redcedar can, under conditions similar to those of our study sites, be successfully established under overstories of up to approximately 25 m2/ha basal area, but that growth performance is likely to be significantly lower than in clearcuts. Despite early survival issues, conclusions regarding Douglas-fir were similar. Poorer survival and vigour of shade-intolerant western larch suggested this species is not suitable for regeneration in partial retention systems where timber production is the primary objective. Where non-timber objectives predominate, survival and acceptable growth of even a small proportion of larch could add to the diversity of the regenerating stand.  相似文献   
7.
Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 “Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources” were added to provide up‐to‐date flux‐based information. Nitrogen (N) additions increase the release of water‐transportable P forms. Most P found in percolates and pore waters belongs to the so‐called dissolved organic P (DOP) fractions, rich in orthophosphate‐monoesters and also containing some orthophosphate‐diesters. Total solution P concentrations range from ca. 1 to 400 µg P L?1, with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m?2 a?1, suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem‐based assessments of dissolved and colloidal P fluxes within and from temperate forest systems.  相似文献   
8.
9.
A 3-year-old, 920 g intact female guinea pig presented with a 4-month history of nonpruritic hair loss on the ventral abdomen. The physical examination revealed flank and ventral abdominal alopecia, mucoid vulvar discharge, and abdominal distension. Bilateral rounded masses just caudal to the kidneys and structures consistent with enlarged uterine horns were detected on abdominal palpation. Abdominal ultrasound revealed bilateral ovarian cysts, thickened uterine horns, and multiple circular hypoechoic and anechoic structures in the uterine wall. The patient underwent ovariohysterectomy. Gross examination of the uterus revealed a piece of hay in the left uterine horn. A final diagnosis was hormonally active ovarian follicular cysts, cystic endometrial hyperplasia, and purulent bacterial endometritis caused by Escherichia coli, Fusobacterium nucleatum, and Arthrobacter spp. Cystic endometrial hyperplasia is infrequently reported in guinea pigs, and this report describes an associated bacterial endometritis and uterine foreign body with concurrent ovarian cysts.  相似文献   
10.
Conventional magnetic resonance imaging (MRI) characteristics of canine brain diseases are often nonspecific. Single‐ and multi‐voxel spectroscopy techniques allow quantification of chemical biomarkers for tissues of interest and may help to improve diagnostic specificity. However, published information is currently lacking for the in vivo performance of these two techniques in dogs. The aim of this prospective, methods comparison study was to compare the performance of single‐ and multi‐voxel spectroscopy in the brains of eight healthy, juvenile dogs using 3 Tesla MRI. Ipsilateral regions of single‐ and multi‐voxel spectroscopy were performed in symmetric regions of interest of each brain in the parietal (n = 3), thalamic (n = 2), and piriform lobes (n = 3). In vivo single‐voxel spectroscopy and multi‐voxel spectroscopy metabolite ratios from the same size and multi‐voxel spectroscopy ratios from different sized regions of interest were compared. No significant difference was seen between single‐voxel spectroscopy and multi‐voxel spectroscopy metabolite ratios for any lobe when regions of interest were similar in size and shape. Significant lobar single‐voxel spectroscopy and multi‐voxel spectroscopy differences were seen between the parietal lobe and thalamus (P = 0.047) for the choline to N‐acetyl aspartase ratios when large multi‐voxel spectroscopy regions of interest were compared to very small multi‐voxel spectroscopy regions of interest within the same lobe; and for the N‐acetyl aspartase to creatine ratios in all lobes when single‐voxel spectroscopy was compared to combined (pooled) multi‐voxel spectroscopy datasets. Findings from this preliminary study indicated that single‐ and multi‐voxel spectroscopy techniques using 3T MRI yield comparable results for similar sized regions of interest in the normal canine brain. Findings also supported using the contralateral side as an internal control for dogs with brain lesions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号