首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bioindication and modelling of atmospheric deposition in forests enable exposure and effect monitoring at high spatial density across scales
Authors:Winfried Schröder  Stefan Nickel  Simon Schönrock  Roman Schmalfuß  Werner Wosniok  Michaela Meyer  Harry Harmens  Marina V Frontasyeva  Renate Alber  Julia Aleksiayenak  Lambe Barandovski  Oleg Blum  Alejo Carballeira  Maria Dam  Helena Danielsson  Ludwig De Temmermann  Anatoly M Dunaev  Barbara Godzik  Katrin Hoydal  Zvonka Jeran  Gunilla Pihl Karlsson  Pranvera Lazo  Sebastien Leblond  Jussi Lindroos  Siiri Liiv  Sigurður H Magnússon  Blanka Mankovska  Encarnación Núñez-Olivera  Juha Piispanen  Jarmo Poikolainen  Ion V Popescu  Flora Qarri  Jesus Miguel Santamaria  Mitja Skudnik  Zdravko ?piri?  Trajce Stafilov  Eiliv Steinnes  Claudia Stihi  Ivan Suchara  Lotti Thöni  Hilde Thelle Uggerud  Harald G Zechmeister
Institution:1.Chair of Landscape Ecology,University of Vechta,Vechta,Germany;2.Institute for Statistics,University of Bremen,Bremen,Germany;3.ICP Vegetation Programme Coordination Centre, Centre for Ecology & Hydrology, Environment Centre Wales,Bangor,UK;4.Moss Survey Coordination Centre, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research,Moscow,Russia;5.Environmental Agency of Bolzano,Laives,Italy;6.International Sakharov Environmental University,Minsk,Belarus;7.Ss. Cyril and Methodius University,Skopje,Macedonia;8.National Botanical Garden,Academy of Science of Ukraine,Kiev,Ukraine;9.Ecologia Facultad De Biologia,University of Santiago de Compostela,Santiago de Compostela,Spain;10.Environment Agency,Argir,Faroe Islands;11.IVL Swedish Environmental Research Institute,G?teborg,Sweden;12.Veterinary and Agrochemical Research Centre CODA-CERVA,Tervuren,Belgium;13.Ivanovo State University of Chemistry and Technology,Ivanovo,Russia;14.W. Szafer Institute of Botany, Polish Academy of Sciences,Kraków,Poland;15.Jo?ef Stefan Institute,Ljubljana,Slovenia;16.University of Tirana,Tirana,Albania;17.National Museum of Natural History,Paris,France;18.Natural Resources Institute,Helsinki,Finland;19.Tallinn Botanic Garden,Tallinn,Estonia;20.Icelandic Institute of Natural History,Gareab?r,Iceland;21.Institute of Landscape Ecology,Slovak Academy of Sciences,Bratislava,Slovakia;22.Universidad de La Rioja,Logro?o,Spain;23.Natural Resources Institute Finland (Luke),Oulou,Finland;24.Valahia University of Targoviste,Targoviste,Romania;25.University of Vlora,Vlor?,Albania;26.University of Navarra,Navarra,Spain;27.Slovenian Forestry Institute,Ljubljana,Slovenia;28.Green Infrastructure Ltd,Zagreb,Croatia;29.Norwegian University of Science and Technology,Trondheim,Norway;30.Silva Tarouca Research Institute for Landscape and Ornamental Gardening,Pr?honice,Czech Republic;31.FUB-Research Group for Environmental Monitoring,Rapperswil,Switzerland;32.Norwegian Institute for Air Research,Kjeller,Norway;33.University of Vienna,Wien,Austria
Abstract:

Key message

Moss surveys provide spatially dense data on environmental concentrations of heavy metals and nitrogen which, together with other biomonitoring and modelling data, can be used for indicating deposition to terrestrial ecosystems and related effects across time and areas of different spatial extension.

Context

For enhancing the spatial resolution of measuring and mapping atmospheric deposition by technical devices and by modelling, moss is used complementarily as bio-monitor.

Aims

This paper investigated whether nitrogen and heavy metal concentrations derived by biomonitoring of atmospheric deposition are statistically meaningful in terms of compliance with minimum sample size across several spatial levels (objective 1), whether this is also true in terms of geostatistical criteria such as spatial auto-correlation and, by this, estimated values for unsampled locations (objective 2) and whether moss indicates atmospheric deposition in a similar way as modelled deposition, tree foliage and natural surface soil at the European and country level, and whether they indicate site-specific variance due to canopy drip (objective 3).

Methods

Data from modelling and biomonitoring atmospheric deposition were statistically analysed by means of minimum sample size calculation, by geostatistics as well as by bivariate correlation analyses and by multivariate correlation analyses using the Classification and Regression Tree approach and the Random Forests method.

Results

It was found that the compliance of measurements with the minimum sample size varies by spatial scale and element measured. For unsampled locations, estimation could be derived. Statistically significant correlations between concentrations of heavy metals and nitrogen in moss and modelled atmospheric deposition, and concentrations in leaves, needles and soil were found. Significant influence of canopy drip on nitrogen concentration in moss was proven.

Conclusion

Moss surveys should complement modelled atmospheric deposition data as well as other biomonitoring approaches and offer a great potential for various terrestrial monitoring programmes dealing with exposure and effects.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号