首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   3篇
农学   1篇
基础科学   4篇
  3篇
综合类   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2014年   5篇
排序方式: 共有10条查询结果,搜索用时 156 毫秒
1
1.
平面激光诱导荧光法测量射流混药浓度场研究   总被引:1,自引:1,他引:0  
为了验证平面激光诱导荧光(planar laser induced fluorescence,PLIF)方法测量射流混药浓度场的可行性,该文在考察射流混药浓度场随压力变化特性基础上,开展基于PLIF的射流混药浓度场测量试验。研制了射流混药装置及辅助测量装置。配制6种不同浓度的罗丹明6G均匀混合液进行浓度标定,采用平滑滤波消除测量噪声影响。对比总体灰度值标定和分栅格标定2种方法的标定效果,结果表明:采用分栅格标定可以获得较平均的分区域浓度,在标定浓度为1.000 mg/L时,分栅格标定的最大最小平均值之差仅为总体标定的25.22%。开展3种吸入浓度、进水口压力0.1~0.6 MPa时的浓度场测量试验,结果表明:总体上混合管末端变异系数偏大,靠近管壁的变异系数偏大;在压力0.1和0.2MPa时,在测量区域末端的混合液浓度偏大,变异系数较大,混合均匀性较差。该文试验结果表明PLIF方法可用于射流混药浓度场测量,试验方法和结果可为其他液液混合浓度场测量提供参考。  相似文献   
2.
雾滴大小、气象条件和施药装备的作业参数对雾滴的覆盖范围、靶标的吸附性能有影响。无人飞机(UAV)是目前有助于高效喷雾的现代施药技术装备。然而作业参数对靶标区和脱靶区的影响依然尚待确定。开展了田间试验并运用沉积扫描软件测定了在田外除草中不同飞行高度(2 m和3 m)和飞行速度(2 m/s和3 m/s)下雾滴的沉积量、覆盖密度、覆盖率和雾滴直径。结果表明,当无人飞机在处理T_1中以2 m/s速度、2 m高度飞行时,靶标区域平均沉积量最高,为2.29μL/cm~2,飞行航线中央0点位置的覆盖率达到36.19%。处理T_1、T_2、T_3和T_4在飞行航线中央的雾滴谱相对宽度分别为0.70、1.01、1.03、1.05。处理T_1体积中值直径(VMD,也即D_(v0.5))最大,为448.75μm;而处理T_4的D_(v0.5)最小,为238.95μm。单旋翼无人飞机在脱靶区的沉积量几乎可以忽略不计。本研究为无人飞机运营商、农民和生产企业提供了参考,从而优化航空植保技术在除草上的应用。  相似文献   
3.
针对两种小流量喷头,进行离喷头不同高度、不同压力的粒径谱测量,分析粒径谱随高度、压力变化情况;比较清水和乳油混合液的粒径谱,分析农药剂型对粒径谱的影响;进行清水和乳油喷雾时喷头出口处的雾滴速度场测量,分析农药剂型、喷头类型,压力等对喷头喷雾特性的影响.试验结果表明,压力、剂型对不同喷头的喷雾效果影响不同.总体上,喷雾压力越大,雾滴体积中径越小;相同压力下,扇形雾喷头在乳油喷雾时的粒径大于清水喷雾,而空心锥形雾喷头在乳油喷雾时粒径谱发生变化,产生细小雾滴分布.在乳油和清水喷雾时,扇形雾喷头的雾滴速度随压力增大而增大;在清水喷雾时,空心锥形雾喷头在压力增大时粒径减小,雾滴平均速度变化不大;在乳油喷雾时,空心锥形雾喷头由于产生细小雾滴,雾滴平均速度减少.  相似文献   
4.
基于机载三维激光扫描的大豆冠层几何参数提取   总被引:2,自引:1,他引:1  
为了实现大田大豆单株植株几何参数(高度、体积)准确获取,该文构建了基于机载激光雷达(LiDAR)的农作物表型探测系统,并开展了大田标定和探测试验。针对大田大豆垄上种植模式下地面平整度差异大、植株枝叶交接难以区分的问题,提出了一种LiDAR表型探测系统下的基于局部邻域特征分割与均值漂移算法的提取方法。在获取的点云中,首先使用基于局部邻域特征的语义分割方法提取一垄植株行,然后采用均值漂移算法提取单株植株,最后进行植株表面重建和植株几何参数统计。LiDAR表型探测系统在沿探测系统前进运动方向、垂直运动方向、垂直地面方向最大误差分别为0.58%(5.8 cm)、-1.75%(-7.0 cm)、-1.74%(-3.4 cm)。该文采用的基于局部邻域特征的分割方法,植株与地面分类的效果良好,人工统计植株数量相比,检测植株数量的平均相对误差为11.83%。相对于常用的RANSAC(random sampleconsensus)方法,使用该文提出的高度计算方法,大豆植株高度平均相对误差从9.05%下降到5.14%,利用alpha-shape算法重建后的冠层体积平均值为48.5 dm3。该文工作可为作物植株分割和体积统计提供借鉴。  相似文献   
5.
电化学分析方法检测黄瓜中残留的西维因   总被引:1,自引:0,他引:1  
基于氨基甲酸酯类农药抑制乙酰胆碱酯酶活性的原理,以硫化镉-石墨烯纳米复合物为酶固定化材料,以西维因作为模型化合物构建了基于乙酰胆碱酯酶的氨基甲酸酯类农药的生物传感平台。结果表明,固定在硫化镉-石墨烯纳米复合材料上的乙酰胆碱酯酶与氯化硫代乙酰胆碱的亲和能力强,并且硫化镉-石墨烯纳米复合材料上的乙酰胆碱酯酶对氯化硫代乙酰胆碱的催化活性高,其米氏常数Km为0.24 mmol;由于硫化镉-石墨烯纳米复合材料的引入,增加了氯化硫代乙酰胆碱在电极表面的电子转移速度,提高了检测的灵敏度;该传感器对西维因的检测范围为2 ng/m L~2μg/m L,检测限为0.72 ng/m L,研究结果为氨基甲酸酯类农药的快速检测提供了一种有效的途径。  相似文献   
6.
将检测抗体(dAb)和二茂铁甲酸(FCA)固载于二氧化硅修饰的氧化锌(Zn O@Si O2)表面制备纳米复合材料标记物({dAb-Zn O-FCA}),并将其用于放大电化学免疫分析乳制品中大肠杆菌(Escherichia coli)。采用"三明治"免疫分析模式,基于二茂铁甲酸产生的电流信号与大肠杆菌浓度之间的关系实现了对大肠杆菌的检测。结果表明,二茂铁甲酸产生的电流信号与大肠杆菌浓度的对数在2.0×102~2.0×106CFU/m L范围内保持良好的线性关系,检出限为100 CFU/m L(S/N=3)。利用该电化学免疫分析方法对乳制品进行了大肠杆菌的加标回收试验,回收率在95.8%~105%之间。  相似文献   
7.
在线混药喷雾系统混药性能试验   总被引:5,自引:5,他引:0  
为寻求在线混药喷雾系统中射流混药装置对系统工作状态的影响,该文以胭脂红溶液模拟农药,考察了24种不同结构参数的射流混药装置应用于3种不同流量特性的在线混药喷雾系统时的工作特性,采用分光光度法对F110-015喷雾系统中射流嘴出口直径d=2.00 mm,面积比m=4.00的射流混药装置进行混药均匀性检测。试验结果表明,射流混药装置的结构参数对喷雾系统的工作状态具有显著影响,在同一种喷雾系统中,改变射流混药装置的结构参数,喷雾系统的工作状态也发生改变。在不同试验方案中,喷雾系统呈现回流和吸药2种工作状态;在射流混药理论分析及试验的基础上,给出了解决药液回流问题的2种方案,即增大射流嘴进口直径或减小射流嘴出口直径和降低喷雾系统的阻力系数。并通过试验结果证明,F110-015喷雾系统在4种喷雾压力(0.26、0.30、0.34和0.36 MPa)下的混药浓度变异系数CV(coefficient of variation)均小于5%,说明该装置可用于在线混药喷雾系统,也为射流混药在线喷雾系统的应用提供有效的参考。  相似文献   
8.
研究饮水机铜内胆对饮用水中细菌的抑菌生物效应,并采用细菌平板计数法比较铜内胆和不锈钢内胆盛放饮用水中细菌含量随放置时间的变化关系。铜内胆的主要抗菌机理是铜表面能够缓慢释放二价铜离子进入细胞膜并破坏细菌的生物氧化过程。结果表明,铜内胆对饮用水的抑菌能力明显强于不锈钢内胆的抑菌能力,该结果为饮水机的改进、突破饮水机二次污染的瓶颈提供了参考,对保障饮用桶装水的安全具有十分重要的意义。  相似文献   
9.
目前,农药喷雾沉积的检测方法,大都无法直接、快速检测雾滴在叶片上的沉积分布参数,对于实时评价植保喷雾机械的作业效果及反馈调整作业参数效率产生了影响。针对此问题,本文基于荧光反应和图像处理,设计了一种叶面雾滴沉积检测系统。试验结果表明:相比于ImageJ对叶面雾滴覆盖率的处理结果,本监测系统的平均误差为4.08%;相比于人工计数,本系统的雾滴沉积粒数计数结果误差为2.46%~4.69%,平均误差为4.01%;使用的荧光试剂可以满足大田工作需求。所设计的检测系统可以实现对叶片雾滴沉积参数的快速无损检测。  相似文献   
10.
准确快速检测水体中农药残留对水体安全至关重要。基于纳米通道电流整流现象,利用适配体特异性结合目标物的特点,构建了电化学适配体传感器,以实现马拉硫磷(Mal)的检测.通过金硫键将Mal适配体1(Apt-1)修饰到镀有金膜的纳米管腔内,利用Mal与Apt-1和适配体2(Apt-2)特异性结合后改变纳米通道内电荷密度的特点,实现Mal的定量检测.采用扫描电镜(SEM)和圆二色谱(CD),对纳米管及通道内部进行表征;对Apt-1在纳米通道内部的修饰浓度、Apt-2的使用浓度、孵育溶液的pH以及孵育时间进行优化.在最佳工作条件下,Mal浓度的对数与传感器的响应电流信号呈线性关系,传感器对Mal的检测线性范围为1.0×10-8~1.0×10-6 mol/L,检测限(LOD)为3.33×10-9 mol/L.考察了传感器的稳定性以及对Mal的检测选择性,并将传感器用于水样中Mal的分析,所得结果与气相色谱(GC)方法所得结果基本一致.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号