首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50726篇
  免费   3124篇
  国内免费   1542篇
林业   2613篇
农学   2676篇
基础科学   1321篇
  7095篇
综合类   10752篇
农作物   2225篇
水产渔业   2471篇
畜牧兽医   21689篇
园艺   1178篇
植物保护   3372篇
  2023年   381篇
  2022年   752篇
  2021年   998篇
  2020年   985篇
  2019年   989篇
  2018年   1193篇
  2017年   1490篇
  2016年   1249篇
  2015年   1336篇
  2014年   1437篇
  2013年   2656篇
  2012年   2363篇
  2011年   2660篇
  2010年   2083篇
  2009年   2047篇
  2008年   2328篇
  2007年   2111篇
  2006年   1814篇
  2005年   1559篇
  2004年   1283篇
  2003年   1173篇
  2002年   1051篇
  2001年   1418篇
  2000年   1387篇
  1999年   1042篇
  1998年   474篇
  1997年   504篇
  1996年   402篇
  1995年   476篇
  1994年   405篇
  1992年   689篇
  1991年   823篇
  1990年   707篇
  1989年   743篇
  1988年   684篇
  1987年   630篇
  1986年   677篇
  1985年   595篇
  1984年   466篇
  1983年   412篇
  1979年   553篇
  1978年   432篇
  1976年   365篇
  1975年   397篇
  1974年   459篇
  1973年   474篇
  1972年   447篇
  1970年   366篇
  1969年   401篇
  1967年   359篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
1.
为明确不同种植密度对机采辣椒品种性状、产量的影响,以适宜机采的辣椒‘辣研102’为研究对象,设置4个种植密度(P0:38 480株/hm2、P1:51 307株/hm2、P2:76 961株/hm2、P3:102 615株/hm2),分别于贵阳、遵义两地开展田间小区试验。结果表明,随着种植密度的增加,辣椒株高呈增加趋势,茎粗呈下降趋势。辣椒根部、地上部生物量均在高密植条件下(P3)时达到最小。辣椒的发病率与病情指数均随种植密度的增加而显著提高,高密植处理条件下(P3)达到最大,发病率分别为41.67%(贵阳)、43.33%(遵义),病情指数分别为31.05%(贵阳)、29.86%(遵义)。过高的种植密度导致单株辣椒光合作用大幅下降:P1、P2、P3处理条件下光合速率分别较P0处理显著降低13.94%、24.73%、29.66%(遵义);P1、P2、P3处理条件下辣椒叶片蒸腾速率较P0降低10.02%、19.81%、42.12%(贵阳)。辣椒总产量随种植密度增加而显著提高,而商品果产量随种植密度的增加呈先增加后降低的趋势。商品果产量在P1条件下获得最大值,相对于P0、P2、P3贵阳辣椒商品果产量显著提高了16.43%、32.81%、41.67%,遵义提高了20.25%、26.67%、61.02%。综合辣椒生长与商品果产量,贵州机采辣椒‘辣研102’最佳种植密度为51307株/hm2。  相似文献   
2.
为摸索滇中高海拔冷凉山区反季节栽培花椰菜的最佳播期以集成高效栽培技术推广应用,于2017—2018年选择海拔2250 m的云南省峨山县塔甸镇大西村地块进行9个播期的2年随机区组试验。结果表明,花椰菜生育期随播期推迟而延长,而花球采收期除播期7月10日外随播期推迟而逐渐增长;花椰菜株高、外叶数、开展度、球高、球径和单球重等农艺性状有随播期延迟呈现先逐渐减小而后又逐渐增大的趋势;莲座期黑腐病和霜霉病的病情指数随着播期的延迟呈现先逐渐升高而后又逐渐下降的趋势;花椰菜小区产量随着播期的延迟呈现先逐渐下降而后又逐渐提高的趋势,播期4月20日和4月30日与其余7个播期产量之间的差异达极显著水平。综合花椰菜在冷凉山区反季节栽培的生产实际和各播期产量产值及商品性表现,推荐滇中高海拔冷凉山区反季节栽培花椰菜的最佳播期为4月20—30日。  相似文献   
3.
Efficient management of whitefly-borne diseases remains a challenge due to the lack of a comprehensive understanding of their epidemiology, particularly of the diseases tomato golden mosaic and tomato yellowing. Here, by monitoring 16 plots in four commercial fields, the temporal and spatial distribution of these two diseases were studied in tomato fields in Brazil. In the experimental plots these diseases were caused by tomato severe rugose virus (ToSRV) and tomato chlorosis virus (ToCV), respectively. The incidence of each virus was similar in the plots within a field but varied greatly among fields. Plants with symptoms for both diseases were randomly distributed in three of four spatial analyses. The curves representing the progress of both diseases were similar and contained small fluctuations, indicating that the spread of both viruses was similar under field conditions. In transmission experiments of ToSRV and ToCV by Bemisia tabaci MEAM1 (former biotype B), these viruses had a similar transmission rate in single or mixed infections. It was then shown that primary and secondary spread of ToCV were not efficiently controlled by insecticide applications. Finally, in a typical monomolecular model of disease progress, simulation of the primary dissemination of ToSRV and ToCV showed that infected plants were predominantly randomly distributed. It is concluded that, although the manner of vector transmission differs between ToSRV (persistent) and ToCV (semipersistent), the main dispersal mechanisms are most probably similar for these two diseases: primary spread is the predominant mechanism, and epidemics of these diseases have been caused by several influxes of viruliferous whiteflies.  相似文献   
4.
旨在满足马铃薯生产中茬口衔接、机械化生产技术应用、不利气候下稳产等对马铃薯出苗早、齐、壮的需求,以‘费乌瑞它’为供试品种,用基于有益活菌或工程菌提取物的5种生物制剂进行种薯处理,对多重性状进行了对比分析。5种生物制剂较常规化学制剂,均能够不同程度地促进种薯萌芽和芽根同生,出苗期提前2~7天,播种后49天的出苗率提高3.33%~17.78%。其中,表现最好的为酵母核苷酸衍生物和VDAL,种薯萌发和生根均显著高于对照。霜冻后,生物剂拌种处理在恢复前期促进植株生长,由此促进恢复后期的块茎发育,较常规化学处理增产8.39%~24.03%,体现了不同程度的保产效果。多马道黑、酵母核苷酸衍生物、根肽和VDAL体现出较好的保产效果,可作为种薯处理剂投入马铃薯生产。  相似文献   
5.
Carbon storage in the soils on the Qinghai–Tibetan Plateau plays a very important role in the global carbon budget. In the 1990s, a policy of contracting collective grasslands to smaller units was implemented, resulting in a change from the traditional collective grassland management to two new management patterns: a multi‐household management pattern (MMP: grassland shared by several households without enclosures) and a single‐household management pattern (SMP: grassland enclosed and used by only one household). In 2016, 50 MMP and 54 SMP winter pastures on the Qinghai–Tibetan Plateau were sampled to assess the differences in soil organic carbon (SOC) between the two management patterns. Results showed that average SOC was significantly greater under MMP than under SMP, with an estimated 0.41 Mg C/ha/yr lost due to SMP following the new grassland contract. Based on the government's grassland policy, four grassland utilization scenarios were developed for both summer and winter pastures. We found that if the grassland were managed under SMP, likely C losses ranged between 0.31 × 107 and 6.15 × 107 Mg C/yr across the Qinghai–Tibetan Plateau relative to MMP, which more closely resembles pre‐1990s grassland management. Previous estimates of C losses have only considered land use change (with cover change) and ignored the impacts driven by land management pattern changes (without cover change). The new data suggest that C losses from the Qinghai–Tibetan Plateau are greater than previously estimated, and therefore that the grassland contract policy should be reviewed and SMP households should be encouraged to reunite into the MMP. These findings have potential implications for land management strategies not only on the Qinghai–Tibetan Plateau but also other grazing regions globally where such practices may exist.  相似文献   
6.
Low molecular weight secondary metabolites of marine fungi Aspergillus flocculosus, Aspergillus terreus and Penicillium sp. from Van Phong and Nha Trang Bays (Vietnam) were studied and a number of polyketides, bis-indole quinones and terpenoids were isolated. The structures of the isolated compounds were determined by 1D and 2D NMR and HR-ESI-MS techniques. Stereochemistry of some compounds was established based on ECD data. A chemical structure of asterriquinone F (6) was thoroughly described for the first time. Anthraquinone (13) was firstly obtained from a natural source. Neuroprotective influences of the isolated compounds against 6-OHDA, paraquat and rotenone toxicity were investigated. 4-Hydroxyscytalone (1), 4-hydroxy-6-dehydroxyscytalone (2) and demethylcitreoviranol (3) have shown significant increasing of paraquat- and rotenone-treated Neuro-2a cell viability and anti-ROS activity.  相似文献   
7.
为评价氨唑草酮的环境安全性,参照国家标准GB/T 31270-2014的要求,采用室内模拟法研究了氨唑草酮在不同温度和不同pH值缓冲溶液中的水解特性、在不同环境介质中的挥发特性,以及在2种水-沉积物系统中的降解特性。结果表明:氨唑草酮在25 ℃时,在pH值为4或7的缓冲液中水解半衰期均长于365 d,在pH值为9的缓冲液中水解半衰期为90.0 d,属于难水解至中等水解农药。在20~25 ℃、气体流速500 mL·min-1的条件下,氨唑草酮在空气、水和土壤中的挥发率均小于1%,属于难挥发农药。氨唑草酮在湖泊(杭州西湖)水-沉积物系统和河流(京杭大运河)水-沉积物系统中的降解符合一级动力学方程,好氧降解半衰期分别为408 d和630 d,厌氧降解半衰期分别为248 d和990 d,在水-沉积物系统中属于难降解农药。  相似文献   
8.
Ray blight caused by Stagonosporopsis tanaceti is one of the most important diseases of pyrethrum (Tanacetum cinerariifolium), a perennial herbaceous plant cultivated for the extraction of insecticidal pyrethrins in Australia. The disease is responsible for complete yield loss in severe outbreaks. Infected seed is considered as the principal source of S. tanaceti. Infection hyphae remain only in the seed coat and not in the embryo, resulting in pre- and post-emergence death of seedlings and latent infection. Therefore, quantification of the level of infection by S. tanaceti within seed using a qPCR assay is important for efficient management of the disease. Stagonosporopsis tanaceti completes its life cycle within 12 days after leaf infection through production of pycnidia and can infect every tissue of the pyrethrum plant except the vascular and root tissues. Ray blight epidemics occur in pyrethrum fields through splash dispersal of pycnidiospores between adjacent plants. Besides steam sterilization, thiabendazole/thiram and fludioxonil are effective seed-treating chemicals in controlling S. tanaceti before planting begins. Ray blight is currently managed in the field through the foliar application of strobilurin fungicides in the first 1–2 years of crop establishment. Later on, difenoconazole and multisite specific fungicides in the next 2–3 years during early spring successfully reduce ray blight infestation. Avoiding development of resistance to fungicides will require more sustainable management of ray blight including the development and deployment of resistant cultivars.  相似文献   
9.
10.
In the past five decades, constant research has been directed towards yield improvement in pigeonpea resulting in the deployment of several commercially acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest breakthrough, enigma of stagnant productivity still remains unsolved. To sort this productivity disparity, genomic research along with conventional breeding was successfully initiated at ICRISAT. It endowed ample genomic resource providing insight in the pigeonpea genome combating production constraints in a precise and speedy manner. The availability of the draft genome sequence with a large‐scale marker resource, oriented the research towards trait mapping for flowering time, determinacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined core and mini‐core collection, still eased the pigeonpea breeding being accessible for existing genetic diversity and developing stress resistance. Modern genomic tools like next‐generation sequencing, genome‐wide selection helping in the appraisal of selection efficiency is leading towards next‐generation breeding, an awaited milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing genetic improvement in pigeonpea with an amalgam of conventional breeding as well as genomic research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号