首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为评价异恶唑草酮的环境安全性,采用室内模拟试验方法,研究了异恶唑草酮在不同环境介质(空气、水和土壤表面)的挥发特性,在不同质地土壤(潮土、水稻土、黑土和红壤土)的吸附特性,和2种水-沉积物系统中的降解特性。结果表明:异恶唑草酮在潮土、水稻土、黑土和红壤土中的吸附均符合弗罗因德利希(Freundlich)方程,吸附常数值分别为0.640 6、1.376 2、0.816 9和1.289 5,在土壤中属于难吸附农药。异恶唑草酮在湖泊(杭州西湖)水-沉积物系统和河流(杭州运河)水-沉积物系统中的好氧降解和厌氧降解均符合一级动力学方程,好氧降解半衰期分别为73.7 h和75.3 h,厌氧降解半衰期分别为42.3 h和43.0 h,在水-沉积物系统中属于易降解农药。在20~25 ℃、气体流速为500 mL·min-1的条件下,异恶唑草酮在空气、水和土壤表面的挥发率均小于1%,属于难挥发性农药。试验结果表明,异恶唑草酮在空气、水和土壤表面难挥发,在土壤中难吸附,在水-沉积物系统中降解快,环境风险较小。  相似文献   

2.
实验室条件下,采用高效液相色谱研究了异■唑草酮水解和在水中的光解动态特性,结果表明,异■唑草酮在碱性缓冲液中水解最快,在酸性缓冲液中水解最慢,其水解速率随着温度的升高而加快,温度效应系数和活化能均是在碱性缓冲液中最低。在pH值分别为4、7、9的缓冲液中,25℃时异■唑草酮的水解半衰期分别为150.70、82.50、3.90 h,50℃时的水解半衰期分别为19.40、4.10、0.75 h,根据我国农药登记试验水解等级划分标准,异■唑草酮属于易水解农药。在25℃,光照度为3 350 lx以及紫外强度为58.8μW/cm~2条件下,异■唑草酮在水中的光解半衰期为6.4 h,根据我国农药登记试验的光解特性等级划分标准,异■唑草酮属于中等光解类农药。  相似文献   

3.
为预测和评价双氟磺草胺对水资源及土壤环境的潜在风险提供依据,采用室内模拟试验方法,研究双氟磺草胺在不同土壤(黑土、红壤和水稻土)环境中的降解、吸附、淋溶以及在土壤表面的挥发性和光解性等归趋特征。结果表明:双氟磺草胺在吉林黑土、云南红壤与贵州水稻土中的降解符合一级动力学方程,其在3种土壤中的降解半衰期分别为12.8d、15.0d和12.6d,属于易降解农药;双氟磺草胺在3种土壤中的吸附符合Freundlich方程,Kd值(吸附常数)分别为1.83、1.14和0.537,3种土壤中均难吸附。经土壤薄层层析试验,当溶剂展开18cm时,双氟磺草胺在吉林黑土、云南红壤与贵州水稻土中主要分布在12~18cm、9~18cm和9~18cm土层中,其Rf值(比移值)均为0.917,极易移动。双氟磺草胺在土壤表面光解遵循一级动力学方程,Ct=4.355 8e-0.002 t,光解半衰期为346.5h,属于难光解农药。在(25±2)℃,气体流速为500mL/min的条件下,双氟磺草胺在土壤表面的挥发速率小于0.04%,属于难挥发农药。双氟磺草胺在土壤中难挥发、难光解、难吸附、易移动,但其在土壤中降解较快,对土壤环境的风险性小。  相似文献   

4.
毒死蜱在环境中的降解研究   总被引:2,自引:0,他引:2  
按照<化学农药环境安全评价试验准则>的规定研究了毒死蜱在环境中降解的特性.结果表明,毒死蜱在壤土、粘土和砂土中的降解半衰期分别为23.9、12.6和9.8 d;在pH值4.0、7.0和10.0的水中的水解半衰期分别为22.4、18.9和0.6d;在pH值4.0、7.0和10.0的水中光降解的半衰期分别为12.8、10.7和0.5 d.毒死蜱在环境中属于易降解的农药.  相似文献   

5.
为研究烯效唑在在环境中的降解特性,采用室内模拟试验方法,测定了烯效唑在水体中光解、水解及其在3种不同类型土壤中的降解特性,并对其降解特性进行了评价.结果表明,常温(25℃)下,烯效唑在pH值分别为5.0、7.0和9.0 3种缓冲溶液中的210d内未发生显著的水解作用,其水解半衰期均大于1 a,属难水解性化合物;在人工光源氙灯条件下,该农药的光解半衰期仅为2.07 h,这说明烯效唑较易光解;烯效唑在江西红壤、河南二合土与东北黑土中的降解较慢,降解半衰期均大于3个月.烯效唑在土壤中较难降解.综上所述,烯效唑在环境中具有较强的稳定性,尤其在避光条件难以降解.因此应严格掌握其使用量和使用时期:同时建议加强对烯效唑残留的跟踪监测.  相似文献   

6.
甲氧丙烯酸酯类杀菌剂的环境降解特性研究   总被引:1,自引:0,他引:1  
为了掌握甲氧丙烯酸酯类(Strobilurins)杀菌剂在环境中的行为归趋,评价其在环境中的风险性,采用室内模拟实验法,对嘧菌酯、氰烯菌酯和醚菌酯3种Strobilurins杀菌剂在不同温度、pH水体中,不同类型土壤中及氙灯光照环境下的降解特性展开实验。结果表明:在25 ℃, pH5.0、7.0、9.0条件下嘧菌酯和氰烯菌酯水解缓慢,醚菌酯则较快,降解半衰期范围为0.105 d至1 a以上,其水解特性差异与水体pH值和农药本身结构相关;50 ℃时3种Strobilurins杀菌剂水中降解较25 ℃时水解速  相似文献   

7.
甲氰菊酯农药环境行为研究   总被引:10,自引:0,他引:10  
赵华  李康  徐浩  李振 《浙江农业学报》2004,16(5):299-304
研究了甲氰菊酯的主要环境行为--吸附性、移动性、挥发性及土壤降解、水解和光降解的特性.结果表明,甲氰菊酯在土壤中的吸附为物理吸附,吸附常数(Kd)为:粉土43.89,壤土56.49和粘土80.94;在土壤中不易移动,难以挥发;在土壤中的降解半衰期为25.8~33.2 d;在pH 5,pH 7和pH 9的水溶液中的水解半衰期分别为33.0,48.4和20.8 d;在不同介质中的光降解速率为土壤>玻片>水体.  相似文献   

8.
按照“化学农药环境安全评价试验准则”的规定,研究了毒死蜱在土壤中的主要环境行为——吸附性、移动性、挥发性及降解的特性。结果表明,土壤具有较强的吸持毒死蜱农药的能力,吸附常数(Kd)为:壤土213.51,粘土182.82和砂土157.01;毒死蜱属于在壤土、砂土中不易移动,在粘土中不移动的农药品种;毒死蜱在壤土和粘土属难挥发,在砂土属中挥发;毒死蜱在壤土、粘土和砂土中的降解半衰期分别为23.9d、12.6d和9.8d,属于易土壤降解的农药品种。  相似文献   

9.
2,4-D的水解、光解及在土壤中的降解特性研究   总被引:2,自引:0,他引:2  
[目的]研究2,4-D在环境中的降解特性。[方法]采用室内模拟试验方法,测定2,4-D在水体中光解、水解及其在3种土壤中的降解特性,并对其降解特性进行评价。[结果]在常温(25℃)下,2,4-D在pH 5和9时的水解半衰期分别为117.5和79.7 d,较易水解;在pH 7时的水解半衰期为138.6 d,具有中等程度的水解特性。在人工光源氙灯条件下,其光解半衰期仅为4.63 h,较易光解。常温(25℃)下,2,4-D在江西红壤和东北黑土中的降解半衰期分别为86.6和53.3 d,易于土壤降解;而在太湖水稻土中的降解半衰期为20.2 d,易于土壤快速降解。[结论]2,4-D在环境中具有一定的稳定性,对水体和土壤环境存在一定的风险,应严格掌握其使用量和使用时期,加强对2,4-D在环境中的跟踪监测。  相似文献   

10.
为科学评价吡唑草胺的环境风险,参照“化学农药环境安全评价试验准则”,研究了吡唑草胺在土壤中的主要环境行为——光解、挥发、吸附、移动及降解的特性。结果表明:光解、挥发不是吡唑草胺在土表降解的主要因素;吡唑草胺在土壤中具中等移动或可移动特性,难被土壤吸附;吡唑草胺在土壤中的降解受土壤类型以及环境条件(好氧、积水厌氧)的影响,其降解半衰期为4~96 d。由于吡唑草胺在粘土中移动性较强、降解半衰期较长,因此当在该种土壤上使用吡唑草胺时,可能会对地下水、地表水造成污染。  相似文献   

11.
【目的】对比噻菌灵杀菌剂在不同土壤中的残留降解差异。【方法】研究使用高效液相色谱法分析了噻菌灵杀菌剂在两种土壤中不同温度、不同光照条件下的残留和降解动态。样品在超声振荡条件下用乙腈提取,高效液相色谱仪(配置紫外检测器)检测。添加量在5~10mg/kg。添加回收试验结果表明噻菌灵杀菌剂在两种土壤中的添加回收率为84.1%~90.2%,变异系数为0.98%~1.84%。【结果】试验结果表明,在添加5.0mg/kg和10.0mg/kg噻菌灵的土壤中,30℃条件下,在北京潮褐土中半衰期分别为23.9,24.1d,在东北黑土中的半衰期分别为18.7,21.1d,40℃时,噻菌灵在北京潮褐土和东北黑土中的降解半衰期分别为16.5,21.6d和14,18.9d。光照试验表明,在300 W高压汞灯照射下,添加10.0mg/kg时,噻菌灵在北京潮褐土和东北黑土中的半衰期分别为1.8,1.3d。【结论】此方法的灵敏度、准确度和精密度均符合农药残留测定的技术要求。  相似文献   

12.
苯醚甲环唑在土壤中的降解动力学及其影响因子   总被引:3,自引:1,他引:2  
研究了苯醚甲环唑在北京、萧县、杭州及长沙4个地区土壤中的降解动力学,并探讨了土壤微生物、温度、含水量及药剂质量分数对其降解的影响.结果表明:苯醚甲环唑在4个地区土壤中的降解半衰期为11.63~21.77 d.土壤微生物对苯醚甲环唑降解起主导作用,灭菌土壤降解半衰期是非灭菌条件下的6.09倍;15~40℃范围内,温度升高,土壤中苯醚甲环唑降解加快,15~25℃降解速率增加幅度较大;士壤含水量过高(150%)和过低(25%)都不利于苯醚甲环唑降解,而土壤中药剂质量分数的增大对苯醚甲环唑降解则起阻碍作用.  相似文献   

13.
【目的】系统研究印楝素在水溶液中的水解。【方法】硅胶柱层析法和半制备液相色谱法分离纯化w为44.56%的印楝素原药中的印楝素A,采用核磁共振仪和高效液相色谱定性、定量测定分离得到的印楝素A,建立一种检测水样中印楝素残留的高效液相色谱方法。【结果】核磁共振仪和高效液相色谱测得印楝素A的质量分数分别为90.37%和91.82%。当印楝素添加水平为0.1、1.0和5.0 mg·kg~(-1)时,水样中印楝素的平均回收率为92.53%~94.12%,变异系数为0.35%~0.84%,最小检测质量浓度为0.012 mg·L~(-1)。印楝素在p H 4.0~6.0的缓冲溶液中稳定,当p H大于8.0时,印楝素降解加快,降解半衰期从p H 8.0的14.856 h降到p H 10.0的0.033 h。在p H 6.0的缓冲溶液中,25、35、45℃条件下印楝素的降解半衰期分别为24.68、13.69和2.36 d,而在p H 7.0的缓冲溶液中印楝素的降解半衰期分别为9.35、6.51和0.94 d。在p H 2.0的缓冲溶液中分离纯化水解产物得到印楝素A内酯衍生物。【结论】印楝素在碱性环境下极不稳定,而在弱酸性环境中比较稳定。温度对印楝素的降解影响很大,随着温度的升高印楝素降解加快。  相似文献   

14.
酶联免疫测定技术在研究氟虫腈降解中的应用   总被引:3,自引:0,他引:3  
利用单克隆抗体间接竞争ELISA技术检测氟虫腈在青菜和土壤中的降解规律。其在青菜中的降解动态符合一级降解动力学方程C=0.1927e-0.0666t,降解半衰期为10.4d,r=-0.9787;在土壤中的降解符合一级降解动力学方程C=0.0990e-0.0459t,半衰期为15.1d,r=-0.9826。在室内从紫外线、臭氧、pH值、原子辐照4个方面对氟虫腈消解状况进行了分析,发现紫外线照射25h时,氟虫腈降解率最高可达到90%;通入臭氧60min时,氟虫腈降解率最高可达48.5%;溶液pH为12时,氟虫腈在48h时降解率高达88.0%;而辐照处理对氟虫腈的降解效果不明显。  相似文献   

15.
啶虫脒水解动力学研究   总被引:4,自引:0,他引:4  
为全面评价啶虫脒提供理论依据。通过模拟实验,观察啶虫脒在不同温度、不同pH值水体中的水解情况,研究其水解动力学。啶虫脒在酸性条件下非常稳定,中性条件下几乎不水解,当pH值≥8时,其水解加速,且随着pH值的升高,水解速度显著增加。啶虫脒的水解过程符合一级反应动力学方程。30℃条件下,pH值为8、91、0时,其水解半衰期分别为2311、03和11.7 d。pH值为89、和10时,温度每提高10℃,水解速率分别增加3.8、3.1和2.9倍,水解温度效应系数分别为4.8、4.1和3.9,活化能分别为120.1、107.2和103.6kJ/mol。啶虫脒的水解过程符合一级反应动力学方程,属于碱催化水解。pH值和温度的升高显著加速啶虫脒的水解。  相似文献   

16.
通过田间试验,采用气相色谱法分析研究了溴虫腈在湖南和浙江两地稻田土壤、稻田水和水稻植株中的消解动态。结果表明:溴虫腈在水稻土壤、稻田水和水稻植株中的平均添加回收率分别为90.0%~108.0%、96.2%~105.0%和87.9%~105.0%;溴虫腈在稻田环境中的消解动态符合一级动力学指数模型,在两试验地稻田土壤中的平均半衰期为11.17 d;稻田水中的平均半衰期为5.17 d;水稻植株中的平均半衰期为6.27 d。  相似文献   

17.
土霉素在土壤中降解特性研究   总被引:6,自引:1,他引:5  
采用室内培养法研究了不同温度条件下,土霉素在土霉素单一及土霉素-锌复合体系中的降解作用。结果表明,在4℃和25℃时,土霉素在单一及复合体系中的降解速率均随培养时间增加而降低,随土霉素添加浓度的增加而增加。与4℃相比,土霉素在25℃环境条件下降解速率显著提高,半衰期明显缩短。与单一污染相比,在中、高浓度锌胁迫条件下,土霉素的降解速率明显降低,半衰期明显延长。参考POPs国际公约关于化学品持久性的定义,土霉素在单一及复合体系中均属易降解有机物。  相似文献   

18.
研究了4%杀螟丹粒剂在水稻植株、稻米、稻壳、稻田水和土壤中的残留及消解动态.采用石油醚提取,液液分配净化,气相色谱(GC-ECD)测定,结果表明:杀螟丹在稻田土壤中的平均添加回收率为93.25%~106.85%,相对标准偏差为5.99%~8.17%;在水样中的平均添加回收率为95.43%~103.68%,相对标准偏差为2.64%~8.48%;在稻杆中的平均添加回收率为90.81%~100.8%,相对标准偏差为3.00%~6.89%;在稻壳中的平均添加回收率96.77%~101.09%,相对标准偏差2.75%~6.32%;在稻米中的平均添加回收率为92.89%~97.71%,相对标准偏差为2.98%~8.09%.杀螟丹的最低检出量为1.0×10~(-11)g,土样、水样中杀螟丹的最低检出浓度分别为0.001 mg/kg和0.000 25 mg/L,在水稻稻杆、稻米和稻壳中的最低榆出浓度均为0.005 mg/kg.湖南长沙和云南昆明两地残留消解动态试验结果表明:杀螟丹在稻田土壤、水样和植株中的半衰期分别为:6.8~9.9 d,7.4~7.8 d和7.6~8.9 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号