首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   16篇
  国内免费   1篇
林业   91篇
农学   14篇
基础科学   1篇
  201篇
综合类   48篇
农作物   138篇
水产渔业   33篇
畜牧兽医   175篇
园艺   33篇
植物保护   24篇
  2021年   10篇
  2018年   9篇
  2017年   10篇
  2016年   12篇
  2015年   7篇
  2014年   17篇
  2013年   51篇
  2012年   27篇
  2011年   28篇
  2010年   9篇
  2009年   18篇
  2008年   29篇
  2007年   25篇
  2006年   35篇
  2005年   27篇
  2004年   28篇
  2003年   28篇
  2002年   22篇
  2001年   17篇
  2000年   7篇
  1999年   19篇
  1997年   6篇
  1996年   7篇
  1994年   9篇
  1993年   11篇
  1991年   12篇
  1990年   8篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   11篇
  1979年   6篇
  1978年   5篇
  1976年   6篇
  1975年   6篇
  1972年   6篇
  1970年   8篇
  1969年   7篇
  1965年   5篇
  1959年   5篇
  1941年   5篇
  1940年   5篇
  1936年   7篇
  1935年   8篇
  1934年   5篇
  1928年   6篇
  1926年   9篇
  1924年   6篇
排序方式: 共有758条查询结果,搜索用时 46 毫秒
31.
32.
Forest fungi not only have important functions within the forest ecosystem, but picking their fruit bodies is also a popular past time, as well as a source of income in many developing and developed countries. The expansion of commercial harvesting in many parts of the world has led to widespread concern about overharvesting and possible damage to fungal resources. In 1975, we started a field research project to investigate the effects of mushroom picking on fruit body occurrence. The three treatments applied were the harvesting techniques picking and cutting, and the concomitant trampling of the forest floor. The results reveal that, contrary to expectations, long-term and systematic harvesting reduces neither the future yields of fruit bodies nor the species richness of wild forest fungi, irrespective of whether the harvesting technique was picking or cutting. Forest floor trampling does, however, reduce fruit body numbers, but our data show no evidence that trampling damaged the soil mycelia in the studied time period.  相似文献   
33.

-

Part I: Determination and identification of organic pollutants Part II: Results of the biotest battery and development of a biotest index

-

Preamble. This series of two papers presents the results of an interdisciplinary research project (ISIS) dealing with bioassay-directed fractionation of marine sediment extracts. Part I presents the extraction and fractionation procedure as well as the results of chemical analysis, including non-target analysis of sediments. Part II describes the results of the biotest battery in relation to chemicals possibly causing parts of the observed effects. A biotest index is used to compare the toxicities of the samples.

-

AUTHORS / AFFILIATIONS Ninja Reineke (3), Werner Wosniok (4), Dirk Danischewski (1), Heinrich Hühnerfuss (3), Angelika Kinder (5), Arne Sierts-Herrmann (5), Norbert Theobald (2), Hans-Heinrich Vahl (6), Michael Vobach (1), Johannes Westendorf (6) and Hans Steinhart (5).

-

(1) Federal Research Centre for Fisheries, Institute for Fishery Ecology, Palmaille 9, 22767 Hamburg, Germany (2) Federal Maritime and Hydrographic Agency, Bernhard-Nochtstr. 78, 20359 Hamburg, Germany (3) University of Hamburg, Institute for Organic Chemistry, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany (4) University of Bremen, Institute of Statistics, Bibliothekstr. 1, 28334 Bremen, Germany (5) University of Hamburg, Institute for Food Chemistry, Grindelallee 117, 20146 Hamburg, Germany (6) University of Hamburg, University Hospital Hamburg-Eppendorf, Department for Toxicology, Vogt-Kölln-Str. 30, 22527 Hamburg, Germany (7) Eurofins Wiertz-Eggert-Jörissen, Stenzelring 14b, 21107 Hamburg, Germany

Goal, Scope and Background

The ecological relevance of contaminants in mixtures is difficult to assess, because of possible interactions and due to lacking toxicity data for many substances present in environmental samples. Marine sediment extracts, which contain a mixture of environmental contaminants in low concentrations, were the object of this study. The extracts were investigated with a set of different biotests in order to identify the compound or the substance class responsible for the toxicity. For this goal, a combination of biotests, biotest-directed fractionation and chemical analysis has been applied. Further on, a strategy for the development of a biotest index to describe the toxicity of the fractions without a prior ranking of the test results is proposed. This article (Part II) focuses on the biological results of the approach.

Methods

The toxicological potential of organic extracts of sediments from the North Sea and the Baltic Sea was analyzed in a bioassay-directed fractionation procedure with a set of biotests: luciferase reporter gene assays on hormone receptor and Ah receptor, arabinose resistance test, fish embryo test (Danio rerio), comet assay, acetylcholinesterase inhibition test, heat-shock protein 70 induction, oxidative stress and luminescence inhibition test (Vibrio fischeri). The test results provided the basis for the calculation of a biotest index by factor analysis to compare the toxicity of the samples and fractions.

Results and Discussion

Results of 11 biotests on different fractionation levels of the samples were described and discussed with regard to the occurrence of contaminants and their toxic potentials. Polychlorinated biphenyls, polycyclic aromatic hydrocarbons, quinones, brominated indoles and brominated phenols were in the focus of interest. A biotest index was constructed to compare the toxic responses in the samples and to group the biotest results.

Conclusion

The procedure presented in this study is well suited for bioassay-directed fractionation of marine sediment extracts. However, in relatively low contaminated samples, high enrichment factors and sufficient fractionation is necessary to allow identification of low concentrations of contaminants which is required to link effects and possible causes. In the present case, the relation between substances and effects was difficult to uncover due to relatively low concentrations of pollutants compared to the biogenic matrix and to the remaining complexity of the fractions. The results, with respect to the brominated phenols and indoles in the samples, highlight the successful use of bioassay directed fractionation in the case of high concentrations and high toxicity.

Recommendation and Outlook

In general, it has been shown that a marine risk assessment requires focusing on the input of diffuse sources and taking into account the fact of mixture toxicity. Effects resulting from biogenic substances will make the assessment of the influence of anthropogenic substances even more difficult.  相似文献   
34.
A 90‐day laboratory incubation study was carried out using six contrasting subtropical soils (calcareous, peat, saline, noncalcareous, terrace, and acid sulfate) from Bangladesh. A control treatment without nitrogen (N) application was compared with treatments where urea, ammonium sulfate (AS), and ammonium nitrate (AN) were applied at a rate of 100 mg N (kg soil)–1. To study the effect of N fertilizers on soil carbon (C) turnover, the CO2‐C flux was determined at nine sampling dates during the incubation, and the total loss of soil carbon (TC) was calculated. Nitrogen turnover was characterized by measuring net nitrogen mineralization (NNM) and net nitrification (NN). Simple and stepwise multiple regressions were calculated between CO2‐C flux, TC, NNM, and NN on the one hand and selected soil properties (organic C, total N, C : N ratio, CEC, pH, clay and sand content) on the other hand. In general, CO2‐C fluxes were clearly higher during the first 2 weeks of the incubation compared to the later phases. Soils with high pH and/or indigenous C displayed the highest CO2‐C flux. However, soils having low C levels (i.e., calcareous and terrace soils) displayed a large relative TC loss (up to 22.3%) and the added N–induced TC loss from these soils reached a maximum of 10.6%. Loss of TC differed depending on the N treatments (urea > AS > AN >> control). Significantly higher NNM was found in the acidic soils (terrace and acid sulfate). On average, NNM after urea application was higher than for AS and AN (80.3 vs. 71.9 and 70.9 N (kg soil)–1, respectively). However, specific interactions between N‐fertilizer form and soil type have to be taken into consideration. High pH soils displayed larger NN (75.9–98.1 mg N (kg soil)–1) than low pH soils. Averaged over the six soils, NN after application of urea and AS (83.3 and 82.2 mg N (kg soil)–1, respectively) was significantly higher than after application of AN (60.6 mg N (kg soil)–1). Significant relationships were found between total CO2 flux and certain soil properties (organic C, total N, CEC, clay and sand content). The most important soil property for NNM as well as NN was soil pH, showing a correlation coefficient of –0.33** and 0.45***, respectively. The results indicate that application of urea to acidic soils and AS to high‐pH soils could be an effective measure to improve the availability of added N for crop uptake.  相似文献   
35.
With a predicted rise in average global surface temperature at an unprecedented rate, as well as changes in precipitation and disturbance regimes, climate change will bring forth new challenges for nature conservation in forest ecosystems. Species and habitats to be protected will be affected as well as related concepts and area specific objectives. Climate change impacts are likely to be aggravated by other anthropogenic stresses such as fragmentation, deposition or habitat destruction. To be reliable and effective, current objectives and guidelines of forest conservation need to be reassessed and improved. Our study analyses possible impacts of climate change on forests and identifies key future challenges for nature conservation in forests and ecosystem research. We reviewed 130 papers on climate change impacts on forest ecosystems and species published between 1995 and 2010. The geographical focus of the study is Central Europe. Papers were analysed accounting for direct and indirect impacts of gradual changes as well as stochastic disturbance events in forest ecosystems and their possible consequences for nature conservation.Even though broader aspects of nature conservation (protected areas, biodiversity) are frequently mentioned, little attention is given to forest-specific nature conservation. Particular aspects are insufficiently represented, such as the influence of climate change on different forest succession stages, the development of dead wood volume and quality, responses of secondary broadleaved species, azonal or extrazonal forests as well as ancient woodlands or remnants of historical silvicultural systems. Challenges arise in the context of great uncertainties about future developments. Nature conservation concepts and objectives in forests need to be adapted either within a permanent evaluation process or through the inclusion of further changes a priori, even if they are to some extent unpredictable. In some cases adaptation measures within nature conservation (e.g. adjusting protected areas) may conflict with interests of other stakeholders. Further research, particularly on interrelations between different impacts and the adaptive capacity of current forest ecosystems, associated species and existing genotypes is urgently needed. The scale and complexity of the task at hand calls for the establishment and further strengthening of international research networks.  相似文献   
36.
37.
38.
39.
Videography and night vision equipment were used to observe the diurnal and nocturnal activities of American white pelicans Pelecanus erythrorhynchos ( N =6) foraging on three experimental (0.04 ha) channel catfish ( Ictalurus punctatus ) aquaculture ponds in March 2001. Captive pelicans spent most time foraging per hour from 1700 through 2300 h (CST). No foraging was observed from 0700 through 0800 h. Fish captures per hour were greatest from 1700 through 1900 h. On average, captive pelicans ( N = 5) consumed 1.0 ± 0.2 kg of catfish per bird per day during the 10-d foraging trial. This consumption corresponds with an average intake of over 60,000 kJ of energy per bird during the trial. Relative to morning hours, the average number of bill dips per min was greater during afternoon foraging bouts. Fish captures per bill dip, however, did not differ among trial hours. Thus, pelicans were observed to increase foraging effort subsequent to 1500 h and thereby consumed 224 to 532 catfish (average = 313 ± 74 fish; N = 4) during the 10-d foraging trial in ponds stocked with approximately 74,000 catfish/ha.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号