首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  国内免费   2篇
  2篇
综合类   9篇
农作物   2篇
水产渔业   2篇
畜牧兽医   32篇
园艺   30篇
  2022年   2篇
  2021年   4篇
  2020年   6篇
  2019年   18篇
  2018年   6篇
  2017年   3篇
  2016年   12篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2000年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
11.
AIM: To investigate the effects of microRNA(miRNA)-126 on the proliferation, migration and invasion of human lung cancer cell lines, and to explore its mechanism. METHODS: The A549 cells were transfected with miRNA-126 agomir by Lipofectamine 2000. The expression of miRNA-126 was detected by real-time PCR. The cell activity was detected by MTT assay. The number of viable A549 cells was counted by the method of Trypan blue exclusion. The cell colony-forming capability was determined by cell colony formation test. The cell migration and invasion abilities were assayed by wound healing and Transwell methods, respectively. The protein levels of p-EGFR, EGFR, p-AKT, AKT, p-mTOR and mTOR were determined by Western blot. RESULTS: The expression level of miRNA-126 was significantly increased in the A549 cells compared with negative control(NC) group and control group(P<0.01). The proliferation of A549 cells was decreased extremely after transfected with the miRNA-126 agomir(P<0.01), so did the result of the cell colony-formation test. The migration and invasion abilities of the lung cancer cells were also significantly inhibited. The protein levels of p-EGFR, p-AKT and p-mTOR were significantly down-regulated compared with NC group and control group(P<0.01). CONCLUSION: Over-expression of miRNA-126 significantly inhibits the proliferation, migration and invasion ability of human lung cancer A549 cells by down-regulation of EGFR/AKT/mTOR pathway.  相似文献   
12.
AIM: To investigate the role of fluoxetine in the hippocampal synaptic plasticity in chronic unpredictable mild stress (CUMS) depression rats and its effect on mTOR and autophagy signaling pathways. METHODS: Male Sprague-Dawley rats (n=60) were randomly divided into normal control group, CUMS group and fluoxetine group. The CUMS rat model was established through CUMS combined with solitary raising, and fluoxetine (20 mg·kg-1·d-1) was administered via intragastric gavage. The changes of body weight, the ratio of sugar intake and the results of the behavioral test were recorded to identify the modeling. Moreover, the expression of synaptic plasticity-related proteins glial fibrillary acidic protein (GFAP) and synaptophysin (SYP), apoptosis-related proteins Bcl-2 and caspase-3, mTOR signaling proteins mTOR and 4EBP1, and autophagy-related proteins beclin 1 and LC3 were examined by RT-PCR and Western blot.RESULTS: Compared with control group, the body weight, sucrose intake, and total distance and intermediate residence time in the open field test were significantly decreased in CUMS group. The results of RT-PCR and Western blotting showed that the mRNA and protein levels of SYP and GFAP in CUMS group were significantly down-regulated compared with control group. The expression of Bcl-2 in CUMS group was downregulated, while the protein level of cleaved caspase-3 increased. Decreased phosphorylation levels of mTOR and its downstream target molecule 4EBP1 were observed in CUMS group. Besides, the autophagy-related proteins beclin 1 and LC3 were significantly upregulated at mRNA and protein levels. All these results(upregulation or downregulation) were attenuated by the treatment with fluoxetine, and the difference was statistically significant. CONCLUSION: Fluoxetine might improve hippocampal synaptic plasticity and alleviate symptoms of depression by supressing apoptosis/autophagy signaling pathways and upregulating mTOR signaling pathway.  相似文献   
13.
During their growth and development, animals adapt to tremendous changes in order to survive. These include responses to both environmental and physiological changes and autophagy is one of most important adaptive and regulatory mechanisms. Autophagy is defined as an autolytic process to clear damaged cellular organelles and recycle the nutrients via lysosomic degradation. The process of autophagy responds to special conditions such as nutrient withdrawal. Once autophagy is induced, phagophores form and then elongate and curve to form autophagosomes. Autophagosomes then engulf cargo, fuse with endosomes, and finally fuse with lysosomes for maturation. During the initiation process, the ATG1/ULK1 (unc-51-like kinase 1) and VPS34 (which encodes a class III phosphatidylinositol (PtdIns) 3-kinase) complexes are critical in recruitment and assembly of other complexes required for autophagy. The process of autophagy is regulated by autophagy related genes (ATGs). Amino acid and energy starvation mediate autophagy by activating mTORC1 (mammalian target of rapamycin) and AMP-activated protein kinase (AMPK). AMPK is the energy status sensor, the core nutrient signaling component and the metabolic kinase of cells. This review mainly focuses on the mechanism of autophagy regulated by nutrient signaling especially for the two important complexes, ULK1 and VPS34.  相似文献   
14.
mTOR对信号通路调控的研究进展   总被引:2,自引:0,他引:2  
哺乳动物雷帕霉素靶蛋白(mTOR)信号通路是最近新出现的细胞内重要信号途径,该途径在进化上高度保守,主要通过PI3K/Akt/mTOR信号通路磷酸化激活来调控细胞分裂、促进转录、信号翻译等,从而控制蛋白合成来调节细胞生长。mTOR作为一种重要的调节基因通过调节细胞周期、蛋白质合成、细胞能量代谢等多种途径发挥重要的生理功能,在细胞增殖、生长、分化过程中起着中心调控点的作用。  相似文献   
15.
α-酮戊二酸对LPS慢性应激仔猪小肠黏膜形态与功能的影响   总被引:5,自引:3,他引:2  
为了探讨α-酮戊二酸(AKG)能否缓解LPS慢性应激导致的仔猪小肠黏膜损伤及其机理,本试验研究了AKG对LPS慢性应激仔猪的小肠黏膜形态、血浆D-木糖的含量、血浆和小肠黏膜二胺氧化酶(DAO)活性及小肠黏膜mTOR及磷酸化的mTOR表达量的影响.18头(24±1)日龄健康断奶仔猪随机分成3个处理组(空白对照组、应激对照组、AKG组),每个处理6个重复.各组基础日粮一致,空白对照组和应激对照组饲喂基础日粮+1%淀粉,AKG组饲喂基础日粮+1%AKG.试验期为16 d.应激对照组和AKG组仔猪分别于第10、12、14和16天腹膜注射80μg·kg~(-1)BW的LPS,空白对照组注射相应剂量的灭菌生理盐水.第16天注射LPS 2 h后,按0.1g·kg~(-1)BW的剂量给仔猪灌服D-木糖溶液,注射LPS 3 h后,前腔静脉采血.第17天屠宰取小肠组织样,刮取肠黏膜及制作组织切片.结果表明:(1)与空白对照组相比,应激对照组十二指肠、空肠和回肠黏膜绒毛高度/隐窝深度、空肠和回肠磷酸化mTOR/mTOR(P-mTOR/mTOR)显著降低(P<0.05),血浆DAO活性显著升高(P<0.05).(2)与应激对照组相比,AKG组十二指肠、空肠和回肠黏膜绒毛高度/隐窝深度、空肠黏膜DAO活性、血浆D-木糖及十二指肠、空肠和回肠黏膜P-mTOR/mTOR显著升高(P<0.05).结果显示,日粮中添加1%AKG可在一定程度上改善仔猪的小肠组织学形态和吸收功能,缓解LPS慢性应激导致的仔猪小肠黏膜损伤,这与mTOR信号通路有关.  相似文献   
16.
雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是丝氨酸/苏氨酸蛋白激酶,能感受细胞中的氨基酸、生长因子、能量及环境压力等信号,通过下游效应蛋白调控翻译起始因子,调控蛋白质的合成。作者对近年来mTOR研究的新进展及其在骨骼肌蛋白质合成中的作用进行了综述。  相似文献   
17.
肠道屏障功能具有抵御病原菌和毒素入侵机体的能力,肠道机械屏障是其中最重要的一道屏障。精氨酸可以直接或间接影响肠道机械屏障,文章从精氨酸对猪肠道黏膜生长、绒毛高、细胞生长、肠道通透性等方面简述精氨酸在仔猪肠道屏障功能中的重要作用;并从m TOR信号通路及NO途径等方面对精氨酸影响仔猪肠道机械屏障的机理进行阐述,为深入认识精氨酸在肠道屏障中的作用提供参考。  相似文献   
18.
AIM: To explore whether NOD8 inhibits autophagy in human pancreatic cancer cells and its underlying mechanisms, and to investigate the effect of apoptosis on the autophagy regulated by NOD8. METHODS: The empty plasmid pEGFP-C2 and recombinant plasmid pEGFP-NOD8 were transfected into the Panc-1 cells using JetPRIME reagent.The untransfected cells served as control group. The protein levels of NOD8, autophagy-related proteins beclin-1 and LC3-II, and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway-related proteins Akt, p-Akt, mTOR and p-mTOR were determined by Western blot 48 h after transfection. Meanwhile, the number of LC3 spots was quantified by immunofluorescence staining. Furthermore, after a broad caspase inhibitor Z-VAD-FMK was applied to NOD8-over-expressing cells, the protein expression levels of beclin-1 and LC3-II were detected by Western blot and the number of LC3 spots was observed by immunofluorescence staining. RESULTS: The protein level of NOD8 in pEGFP-NOD8 group was significantly higher than that in control group and pEGFP-C2 group (P<0.01). The protein expression of beclin-1 and LC3-II, and the number of LC3 spots in pEGFP-NOD8 group were significantly decreased as compared with control group and pEGFP-C2 group. Moreover, the protein levels of p-AKT and p-mTOR in pEGFP-NOD8 group were higher than those in control group and pEGFP-C2 group, while no significant difference of mTOR and AKT protein expression was found among these 3 groups. Furthermore, the protein levels of beclin-1 and LC3-II, and the number of LC3 spots in pEGFP-NOD8+Z-VAD-FMK group were significantly increased compared with pEGFP-NOD8 group. CONCLUSION: NOD8 inhibits autophagy in the Panc-1 cells and its mechanism may be related to the activation of PI3K/Akt/mTOR pathways. Apoptosis enhances the inhibitory effect of NOD8 on autophagy.  相似文献   
19.
AIM: To investigate the effect of Xuebijing on testicular ischemia/reperfusion (I/R) injury in rats and its related mechanisms. METHODS: Male Sprague-Dawley rats (n=45) were randomly divided into control group, I/R group, low-dose Xuebijing group, high-dose Xuebijing group and dexamethasone group (n=9 in each group). Except for the rats in control group, the rats in other groups underwent testicular torsion, and after the operation, the rats were treated with 0.5 mL·kg-1·d-1 Xuebijing, 2 mL·kg-1·d-1 Xuebijing and 0.5 mL·kg-1·d-1 dexamethasone in low-dose Xuebijing group, high-dose Xuebijing group and dexamethasone group, respectively. On the 3rd, 7th, and 14th days after treatment, the left testis in the rats of each group was taken. The histopathological changes of the testis were observed by hematoxylin-eosin staining. The levels of malondialdehyde (MDA), superoxide dismutase (SOD), endothelin-1 (ET-1) and nitric oxide (NO) in the testicular tissue were detected by biochemical methods. The protein levels of cell cycle-related molecules, apoptosis-related proteins and PI3K/Akt/mTOR signaling pathway-related proteins were determined by Western blot. RESULTS: Xuebijing significantly attenuated the testicular damage in I/R rats, significantly increased the activity of SOD in the testis of I/R rats, reduced the content of MDA, ET-1 and NO, inhibited oxidative stress in I/R-injured tissues, mediated the protein expression of cell cycle-related factors and apoptosis-related factors, and significantly increased the protein levels of p-PI3K, p-AKT, p-mTOR and p-S6K in the testis of I/R rats (P<0.05). These effects were time-dependent and dose-dependent. CONCLUSION: Xuebijing reduces testicular I/R injury of rats by mediating the expression of cell cycle-related and apoptosis-related proteins and activating PI3K/Akt/mTOR signaling pathway in dose-dependent and time-dependent manners.  相似文献   
20.
AIM:To investigate whether honokiol induces the autophagy of human lung cancer A549 cells and to explore its mechanism. METHODS:The A549 cells were cultured in vitro, and treated with honokiol at different concentrations (0, 10, 20, 40, 60 and 80 μmol/L) for 48 h. MTT assay was performed to analyze the effect of honokiol on the viability of the A549 cells. The formation of autophagosome was observed by staining with acridine orange under fluorescence microscope. The protein levels of autophagy-associated protein LC3, mTOR and p-mTOR in the A549 cells treated with honokiol, or combined with autophagy inhibitor 3-methyladenine (3-MA) were determined by Western blot. RESULTS:Honokiol significantly inhibited the viability of A549 cells in a dose-dependent manner (P<0.05). The number of the intracellular acidic autophageic vacuoles with bright red fluorescence was significantly increased after honokiol treatment. The protein level of LC3-Ⅱ/LC3-I in the A549 cells was significantly enhanced after honokiol (40 μmol/L) treatment, and the ratio of LC3-Ⅱ/LC3-I was significantly decreased by treatment with 3-MA (P<0.05). Furthermore, treatment with honokiol (40 μmol/L) in the A549 cells for 48 h also resulted in significant down-regulation of phosphorylated form of mTOR (P<0.01), while the total protein level was not changed. CONCLUSION:Honokiol significantly inhibits the growth of lung cancer A549 cells and induces the autophagy, which may be correlated with inhibition of mTOR signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号