首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   29篇
  国内免费   18篇
林业   22篇
农学   30篇
基础科学   9篇
  241篇
综合类   150篇
农作物   8篇
水产渔业   16篇
畜牧兽医   57篇
园艺   4篇
植物保护   3篇
  2024年   3篇
  2023年   10篇
  2022年   10篇
  2021年   20篇
  2020年   18篇
  2019年   17篇
  2018年   18篇
  2017年   22篇
  2016年   33篇
  2015年   23篇
  2014年   25篇
  2013年   30篇
  2012年   39篇
  2011年   21篇
  2010年   18篇
  2009年   26篇
  2008年   30篇
  2007年   29篇
  2006年   21篇
  2005年   18篇
  2004年   14篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   13篇
  1999年   6篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   15篇
  1992年   5篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
排序方式: 共有540条查询结果,搜索用时 156 毫秒
21.
The substitution of the widely practiced crop‐residue burning by residue incorporation in the subtropical zone requires a better understanding of factors determining nutrient mineralization. We examined the effect of three temperature (15°C, 30°C, and 45°C) and two moisture regimes (60% and 90% water‐filled pore space (WFPS)) on the mineralization‐immobilization of N, P, and S from groundnut (Arachis hypogae) and rapeseed (Brassica napus) residues (4 t ha–1) in two soils with contrasting P fertility. Crop‐residue mineralization was differentially affected by incubation temperature, soil aeration status, and residue quality. Only the application of groundnut residues (low C : nutrient ratios) resulted in a positive net N and P mineralization within 30 days of incubation, while net N and P immobilization was observed with rapeseed residues. Highest N and P mineralization and lowest N and P immobilization occurred at 45°C under nearly saturated soil conditions. Especially net P mineralization was significantly higher in nearly saturated than in aerobic soils. In contrast, S mineralization was more from rapeseed than from groundnut residues and higher in aerobic than in nearly saturated soil. The initial soil P content influenced the mineralization of N and P, which was significantly higher in the soil with a high initial P fertility (18 mg P (kg soil)–1) than in the soil with low P status (8 mg P (kg soil)–1). Residue‐S mineralization was not affected by soil P fertility. The findings suggest that climatic conditions (temperature and rainfall‐induced changes in soil aeration status) and residue quality determine N‐ and S‐mineralization rates, while the initial soil P content affects the mineralization of added residue N and P. While the application of high‐quality groundnut residues is likely to improve the N supply to a subsequent summer crop (high temperature) under aerobic and the P supply under anaerobic soil condition, low‐quality residues (rapeseed) may show short‐term benefits only for the S nutrition of a following crop grown in aerobic soil.  相似文献   
22.
Effect of pH on nitrogen mineralization in crop-residue-treated soils   总被引:1,自引:0,他引:1  
Summary This study compares N mineralization in soils treated with crop residues [corn (Zea mays L.), soybean (Glycine max (L.) Merr.), sorghum (Sorghum vulgare Pers.)] or alfalfa (Medicago sativa L.) at three adjusted soil pH values (4, 6, and 8); pH was adjusted with dilute H2SO4 or KOH. A sample of soil (20 g) was treated with 0.448 g plant material (equivalent to 50t ha–1), mixed with 20 g silica sand adjusted to the pH of the soil, and packed in a leaching tube. The soil-sand mixture was leached with 100 ml 5 mM CaCl2 adjusted to the same pH as that of the treated soil to remove the initial mineral N, and incubated at 30°C. The leaching procedure was repeated every 2 weeks for 20 weeks. Results from three soils showed that N mineralization increased as the soil pH increased. In one soil (Lester soil), significant amounts of NH 4 + -N accumulated at pH 4 during the first 12 weeks. Treatment with corn and soybean residues resulted in a marked reduction in N mineralization, especially at pH 4. The percentage of organic N mineralized from sorghum residue and alfalfa added to soils increased as the soil pH increased; the values ranged from 7.7% to 37.0% for sorghum and from 17.2% to 30.1% for alfalfa.  相似文献   
23.
L. M. MARAFA  K. C. CHAU 《土壤圈》2005,15(2):181-188
This research examined nitrogen mineralization in the top 10 cm of soils with a vegetation gradient in Hong Kong at sites where fire has been absent for 0, 1, 3, 6 and 17 years (at the time of the study), and the relationships between N mineralization and successional development of vegetation in the absence of fire. The sites including a newly burnt area (S1), short grassland (S2), tall grassland (S3), mixed tall grassland and shrubland (S4), and woodland (S5) were selected, with the in situ core incubation method used to estimate nitrogen mineralization. Throughout the 60-day incubation in four periods, more nitrogen was mineralized at the S3 and S4 sites, the predominantly grassland sites, which contained the highest levels of soil organic matter (SOM) and total Kjeldahl nitrogen (TKN), than the S1 site, while immobilization occurred at the S2 and S5 sites. Leaching loss decreased with successional development of the vegetation, in the order of S1 > S2 > S3 > S4 > S5. The pattern of nitrogen uptake with ecological succession was less conspicuous, being complicated by the immediate effect of fire and possibly the ability of the woodland species to extract nitrogen from the deeper ground. In the absence of fire for 3 to 6 years, the build-up of SOM and TKN was accompanied by active mineralization, thus paving the way for the invasion of shrub and tree species. A close relationship existed between nitrogen mineralization and ecological succession with this vegetation gradient. Inherent mechanisms to preserve nitrogen in a fire-prone environment including immobilization and uptake and the practical relevance of nitrogen mineralization to reforestation are discussed.  相似文献   
24.
用紫外光对假单胞菌株进行诱变,以竹炭为载体,将紫外诱变假单胞菌固定在竹炭上,用竹炭固定化紫外诱变假单胞菌处理间甲酚水样。考察竹炭固定化紫外诱变假单胞菌投加量和水样pH值对间甲酚去除的影响以及进水浓度随反应时间的变化关系,研究竹炭固定化紫外诱变假单胞菌去除间甲酚的反应动力学。结果表明:相对于原菌株,菌株经紫外诱变后,生长周期缩短了6h。经紫外照射120s的假单胞菌可以在竹炭表面及内部孔隙形成明显菌胶团,诱变菌在竹炭上所成的生物量明显较未经诱变菌增加。竹炭固定化紫外诱变假单胞菌能有效地去除水样中间甲酚。竹炭固定化紫外诱变假单胞菌投加量和水样pH值影响到间甲酚的去除效果,pH值在4~6时,间甲酚的去除效果较好。20g竹炭固定化紫外诱变假单胞菌处理100mL初始浓度50,100,120,150,180mg·L-1间甲酚模拟水样42h,去除率依次为90.9%,76.4%,72.9%,64.6%和49.7%。竹炭固定化紫外诱变假单胞菌对间甲酚的去除能较好地符合零级反应方程。  相似文献   
25.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   
26.
Soil microbial immobilization and plant uptake of N were evaluated for three forest types in Kochi, Shikoku district. During 196-d laboratory incubation, soil NO3-N production in the Hinoki cypress forest was negligible for the initial 40 d and then rapidly increased, whereas NO3-N production was rapid from the beginning in Japanese cedar and deciduous hardwood forests. Microbial immobilization of the labeled 15N decreased in the order of NH4-N>glycine-N>NO3-N. The 15N immobilization was higher for soil in the Hinoki cypress forest than other two soils. The delayed NO3-N production in the Hinoki cypress forest was likely related with low availability of NH4-N due to NH4-N immobilization and substantial NO3-N immobilization. In the field experiment, 15N uptake by roots decreased in the order of NH4-N>NO3-N>glycine-N. The absorption of the labeled 13C suggested direct uptake of organic N. The preference of N forms by root uptake was not different among forest types. Trees in three forest types can absorb inorganic and organic forms of N, suggesting trees absorb the N form that is the most abundant in the soil.  相似文献   
27.
The effects of wheat straw and different forms of N on denitrification and N immobilization were studied in an anaerobic water-sediment system. The water-sediment system was supplemented with various combinations of wheat straw and 15N-labelled and unlabelled (NH4)2SO4 or KNO3, and incubated anaerobically at 30°C for 10 days. 15N-labelled and unlabelled NO inf3 sup- , NO inf2 sup- , NH inf4 sup+ , and organic N were determined in the water-sediment system. The gases evolved (N2, CO2, N2O, and CH4) were analyzed by gas chromatography at regular intervals. Larger quantities of 15N2–N and organic 15N were formed in wheat straw-amended systems than in non-amended systems. Trends in CO2 production were similar to those of N2–N evolution. The evolution of N2O and CH4 was negligible. Denitrification processes accounted for about 22 and 71% of the added 15NO inf3 sup- –N in the absence and presence of wheat straw, respectively. The corresponding denitrification rates were 3.4 and 12.4 g 15Ng-1 dry sediment day-1. In systems amended with 15NO inf3 sup- –N and 15NO inf3 sup- +NH inf4 sup+ –N without wheat straw, 1.82 and 1.58%, respectively, of the added 15NH inf3 sup- –N was immobilized. The corresponding figures for the same systems supplemented with wheat straw were 5.08 and 4.10%, respectively. Immobilization of 15NO inf4 sup+ –N was higher than that of 15NO inf3 sup- –N. The presence of NO inf3 sup- –N did not stimulate NH inf4 sup+ –N immobilization.  相似文献   
28.
The interface between decaying plant residues and soil is a hotspot for microbial immobilization of soil inorganic N. Recent studies on forest and grassland soils have demonstrated that rapid abiotic immobilization of inorganic N is also induced by the presence of plant residues. We, therefore, examined (1) how N immobilization varies with distance from the soil-residue interface and (2) whether abiotic immobilization occurs in agricultural soils. Spatiotemporal changes of N immobilization in the soil-residue interface were evaluated using a box that enabled soil to be sampled in 2 mm increments from a 4 mm-thick residue compartment (RC). The RC was filled with paddy soil containing ground plant residue (rice bran, rice straw or beech leaves) uniformly at a rate of 50 g dry matter kg−1. Soil in the surrounding compartments contained no residue. After aerobic incubation for 5, 15 and 30 days at 25 °C, soils in each compartment were analyzed. After 5 days, significant depletion of inorganic N occurred throughout a volume of soil extending at least 10 mm from the RC in all residue treatments, suggesting extensive diffusion of inorganic N towards the RC. The depletion within 10 mm of the RC amounted to 5.0, 4.3 and 3.4 mg for rice bran, rice straw and beech leaf treatment, respectively. On the other hand, microbial N had increased significantly in the RC of the rice bran and rice straw treatments (11 mg and 5.5 mg, respectively) and insignificantly in the RC of the beech leaf treatment (0.06 mg). This increase amounted to 221% (rice bran), 129% (rice straw) and 1.7% (beech leaves) of the decrease in inorganic N within 10 mm of each RC. Thereafter the rate of N mineralization exceeded that of immobilization, and inorganic N levels had recovered almost to their original level by 15 days (rice bran) and 30 days (rice straw and beech leaves). These results suggested the predominance of biotic immobilization in soil near rice bran and rice straw and of abiotic immobilization in soil near beech leaves. No significant increase in both microbial and soluble organic N in the vicinity of beech leaves after incubation for 5 days further suggested that the abiotic process was responsible for the transformation of inorganic N into the insoluble organic N.  相似文献   
29.
用环氧氯丙烷活化 2 %的珠状琼脂糖凝胶 ,并与胰蛋白酶进行偶联反应制备固定化酶。实验结果表明 ,固定化胰蛋白酶的活力受环氧氯丙烷量 ,活化反应的碱浓度及给酶量的影响。每 1.0 g的 2 %珠状琼脂糖凝胶 ,当活化剂量为 5 74 2 μmol,NaOH浓度为 0 .5mol·L-1,活化时间 3h ,给酶量为 5mg·ml-1,偶联 12h时 ,固定化酶活力最大  相似文献   
30.
果胶酶在食品、酿酒、环保、医药及纺织工业上应用十分广泛,固定化果胶酶便于运输和贮存,有利于自动化生产.介绍了几种常用的果胶酶固定化方法,包括吸附法、包埋法、交联法和共价键结合法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号