首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
  国内免费   31篇
农学   1篇
  43篇
综合类   22篇
畜牧兽医   6篇
  2024年   2篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2018年   1篇
  2017年   6篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   10篇
  2010年   4篇
  2009年   4篇
  2008年   3篇
  2006年   8篇
  2005年   1篇
  2004年   2篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
11.
畜禽养殖废弃物资源的环境风险及其处理利用技术现状   总被引:5,自引:1,他引:4  
我国是畜牧业大国,在畜产品生产的同时,也产生大量的粪便和污水副产物,由于畜禽粪便和养殖污水中富含有机质、氮、磷、钾等成分,是潜在的有机肥和物质资源,能生产有机肥或土壤改良剂用于农作物生产,或生产沼气作为清洁能源或直接使用或发电;  相似文献   
12.
放牧条件下白牦牛采食的季节性微调整及其效应   总被引:1,自引:0,他引:1  
为研究牦牛采食模式季节性微调整对摄入的干物质及胃肠道甲烷排放的效应,于2014年9月至2015年9月进行了天祝白牦牛采食试验。结果表明:卷食模式的7?8月,蛋白质摄入最高(10.70%±0.38%)、粗纤维(18.68%±5.31%)和木质素摄入(1.89%±0.49%)最低、反刍间隔最短(1.1±0.3h)。啃食和卷食相结合的4月份半纤维素(15.68%±5.17%)和粗脂肪(1.08%±0.09%)摄入最低;5月份采食速度最快(1.15±0.16口/s);6月份粗灰分摄入最高(18.29%±2.39%)、胎儿出生质量最大;9月份单口采食(1.97±0.27 g)、脂肪摄入量(3.77%±0.08%)、日增质量(97.43±5.18 g/d)、瘤胃甲烷气体排放最高(315.70±21.24 g/d);10月份日采食总量(9749.40±2783.66g/d)、反刍速度最高(1.24±0.15团/min);11月份半纤维素摄入最高(19.46%±2.58%);12月反刍间隔最长(2.9±0.2h)。啃食模式的2月份单口采食量(0.95±0.14g)、采食速度(0.73±0.24口/s)、蛋白质(2.72%±0.49%)、粗灰分摄入(7.14%±3.25%)最低;3月份纤维素(39.25%±7.15%)、木质素(12.57%±0.46%)摄入量为最高,日采食量(4417.29±1114.56 g/d)、反刍速度(0.76±0.16团/min)、日增质量(?48.87±3.56 g/d)、瘤胃甲烷量排放(237.57±22.39 g/d)最低;该研究以解释牦牛生产过程中季节性甲烷排放节律。  相似文献   
13.
大气环境对育肥猪舍内颗粒物浓度的影响   总被引:1,自引:0,他引:1  
2014年10月-2015年8月,以北京昌平某猪场3栋育肥猪舍为例,在猪舍内外设置监测点,对猪舍内外空气动力学直径≤2.5μm的颗粒物(PM2.5)、≤10μm的颗粒物(PM10)和≤100μm的颗粒物(TSP)浓度进行周年监测,并将舍外监测数据与昌平国家环境监测数据进行比较分析,以研究探讨大气环境颗粒物浓度对育肥猪舍内环境的影响。试验结果表明,试验期间舍内外PM2.5浓度的变化范围分别为23~245μgm-3和11~372μgm-3,PM10浓度变化范围分别为113~1182μgm-3和25~444μgm-3,TSP浓度变化范围分别为334~4396μgm-3和31~742μgm-3。育肥猪舍内PM10和TSP浓度远高于猪舍外,说明育肥猪舍内PM2.5浓度受大气环境的影响,而育肥猪舍内粒径大于2.5μm的颗粒物主要源于养殖生产活动。  相似文献   
14.
养殖污水回收利用是未来我国解决养殖污水环境污染的重要途径之一,消毒是保证污水回收利用安全的技术关键。综述了国内外二氧化氯、臭氧、电解水、紫外线和超声波等污水回收利用杀菌消毒技术的作用机理、技术特点以及研究和应用现状,在此基础上提出了进一步探索适合养殖污水杀菌消毒技术的建议,旨在为养殖污水消毒回用技术的研究和应用提供参考。  相似文献   
15.
猪场沼液絮凝上清液的紫外线杀菌效果   总被引:2,自引:2,他引:0  
猪场沼液中含有大量的微生物,为确保其排放或循环利用的卫生和环境安全,应对其进行有效的杀菌处理,目前国内沼液杀菌相关的研究缺乏。由于猪场沼液原液的色度和浊度很高,紫外线透过率很低,采用紫外线杀菌前需要对其进行预处理。该研究采用絮凝方法处理猪场沼液,对所获取的不同透射率沼液絮凝上清液进行杀菌试验,试验以细菌总数、大肠菌群和粪大肠菌群的数量变化及其杀菌率为指标,在4种沼液絮凝上清液透射率(0.01%、0.69%、3.78%和8.54%)、3种紫外线杀菌装置内水深(1、2和3 cm)和5种水力停留时间(1、5、10、15、20和30 min)试验条件下,探讨紫外线对沼液絮凝上清液杀菌的可行性及其运行效果。结果表明,絮凝上清液透射率(T254)、紫外线杀菌装置内水深和水力停留时间等因素对紫外线的杀菌效果均有极显著影响(P0.01),3种因素之间均有极显著的交互作用(P0.01)。试验紫外线灯管强度为395μW/cm2,当沼液絮凝上清液的透射率为0.69%、水力停留时间15 min和紫外线杀菌装置内水深2 cm时,紫外线对细菌总数、大肠菌群和粪大肠菌群的杀菌率分别为(99.99±1.20)%、(99.99±1.43)%和(100.00±0.01)%,使沼液絮凝上清液中粪大肠菌群的数量从3.9×106个/L下降至检出限(3个/L)以下,紫外线杀菌处理出水达到现行国家标准的无害化卫生要求,该研究可能为沼液的紫外线杀菌技术的深入研究和沼液安全循环利用提供参考。  相似文献   
16.
畜禽养殖业产污系数和排污系数计算方法   总被引:38,自引:7,他引:31       下载免费PDF全文
畜禽养殖业产污系数与排污系数是畜牧环境研究和粪便处理工程设计的基础指标,但由于中国畜牧业环境工作起步晚,还没有根据中国畜牧业生产特性确定的产污系数和排污系数。该文根据中国畜禽养殖业的特点,提出了畜禽养殖业产污系数和排污系数的定义、计算方法,并结合典型猪场进行了案例分析。对于北京市某养猪场进行分析,结果表明:该猪场保育、育肥和妊娠母猪3个阶段的COD产污系数分别为每头252.8、479.6、493.4 g/d,全氮分别为每头20.4、33.2、43.7 g/d,全磷分别为每头3.48、6.06、9.93 g/d,在该猪场废弃物处理系统的运行情况下,计算得出了该场保育、育肥和妊娠母猪3个阶段的COD排污系数分别为每头44.9、64.1、22.5 g/d,全氮分别为每头14.1、20.9、36.3 g/d和全磷分别为每头1.0、1.8、0.4 g/d。研究结果为畜禽养殖业污染源普查、废弃物处理工程运行和畜禽养殖业环境影响评价提供了参考。  相似文献   
17.
死猪堆肥处理的通风率选择探讨   总被引:4,自引:3,他引:1  
针对生产中死猪难处理的问题,作者对死猪堆肥技术进行了试验研究。试验采用箱式堆肥方法,设定处理1、处理2、处理3的通风速率分别为300、200和100L/(m3·min),每个处理设置4个重复;堆肥箱有效容积为0.95m3,每个堆肥箱中间单层放入3头死猪(总质量30~32kg),死猪上、下和四周是由玉米秸秆和猪粪混合的堆肥物料。在北京夏季条件下的运行结果表明,各处理堆肥箱内平均温度超过55℃的时间分别为19、19和34d,处理间差异不显著;试验6周后,死猪仅剩下大部分骨骼,此时3种处理的死猪降解率分别达到(95.5±1.4)%、(94.7±1.7)%和(95.0±0.8)%,仅处理1与处理3的死猪质量(湿基)差异显著(P<0.05);试验14d后粪大肠菌群数即能满足相关标准的无害化要求;各处理堆肥物料的同一特性参数的变化规律一致,且无显著差异,堆肥结束时物料的有机质(干基)质量分数在47%~48%,全氮和全磷(干基)的质量分数达5.7%~6.4%,超过《有机肥料》标准的总养分≥5%的技术指标要求。鉴于以上试验结果,综合考虑运行成本,建议死猪箱式堆肥的通风率不大于100L/(m3·min)和堆肥时间不少于6周。死猪堆肥在无害化处理死猪的同时,将其转化成有机肥料,将为中国规模化猪场的死猪处理提供新的技术选择。  相似文献   
18.
畜禽场排出空气的净化技术   总被引:1,自引:0,他引:1  
详细介绍了当前国内外对畜禽场排出空气的主要净化技术和性能,对技术的设计原理、材料选择与净化效果进行了分析评价。  相似文献   
19.
规模猪场机械通风育肥舍氨气产生及排放研究   总被引:2,自引:1,他引:1  
为了获取机械通风育肥猪舍内氨气产生和排放的基础数据,分春、夏、秋和冬四季对规模化种猪场育肥猪舍(试验期间猪的日龄在90~110 d)的氨气浓度进行测定,在猪舍设定3个采样点,每个季节连续采样5 d,每日采样4次,同时采用通风量现场测定系统对风机通风量进行测定。结果表明:育肥猪舍内春季、夏季、秋季和冬季的氨气平均浓度分别为(3.60±1.67)、(3.15±1.02)、(3.88±0.38)、(8.41±0.98)mg·m~(-3),夏季氨气平均浓度最低,其次是春季和秋季,冬季氨气浓度最高;育肥猪舍不同季节通风量为38.1~112.7 m~3·h~(-1)·头-1,夏季通风量分别是春季、秋季和冬季通风量的2.08、2.34、3.04倍,在此通风条件下育肥猪舍内氨气浓度为1.6~10.0 mg·m~(-3)(风机故障除外),均未超过GB/T 17824.3—2008的限值(25 mg·m~(-3));育肥猪舍不同季节白天管理活动时间内(7:00—17:00)氨气排放速率为0.17~0.24 g·h~(-1)·m~(-2),而全天平均氨气排放速率为0.13~0.23 g·h~(-1)·m~(-2),夏季和冬季猪舍氨气排放值较高、其次是春季,秋季排放相对最低。  相似文献   
20.
为探讨经济实用的高浓度奶牛场污水预处理方法,该研究开展了絮凝预处理对膜生物反应器(Membrane Bioreactor,MBR)膜污染的影响试验,试验采用高浓度奶牛场污水原水和絮凝出水作为MBR进水依次运行,对比分析了不同进水的膜污染规律及其原因。结果表明,絮凝出水作为MBR进水时膜污染速率较污水原水降低47%且膜组件的维护性清洗时间间隔由10 d延长至16 d;MBR处理污水原水的膜池混合液中胞外聚合物(Extracellular Polymeric Substances,EPS)和溶解性微生物产物(Soluble Microbial Products,SMP)浓度分别为4.76和3.94 g/L,而处理絮凝出水时的EPS和SMP浓度值分别为3.97和2.23 g/L。两阶段MBR膜池混合液各粒径值总体上均呈现先增大后减小的趋势,第1和第2阶段的最大粒径体积百分比分别出现在第16天和第23天,第1阶段EPS浓度和SMP浓度均随着颗粒粒径的增大而减小,第2阶段EPS浓度随着颗粒粒径的增大而增大但SMP浓度与颗粒物粒径之间无变化规律;MBR处理污水原水的膜池混合液颗粒粒径的峰值较分散,且16 d后峰值向小粒径方向移动,而处理絮凝出水的峰值粒径相对稳定,且峰值粒径对应的最大体积百分比从3.57%增加至5.95%。MBR对2种进水的化学需氧量(Chemical Oxygen Demand,COD)去除率均可达90%以上,氨氮(Ammonia Nitrogen,NH3-N)去除率均接近90%,对絮凝出水的总磷(Total Phosphorus,TP)处理效果高于污水原水。絮凝预处理使膜池混合液的EPS和SMP浓度降低且SMP蛋白质浓度显著降低(P<0.05)、膜池混合液颗粒粒径显著增加(P<0.05),有效减缓了MBR的膜污染,絮凝预处理与MBR组合可望为高浓度奶牛场污水处理提供可靠的技术途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号