首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toll‐like receptor 2 (TLR2) is a receptor for a variety of microbial components, and it also mediates activation signals in the cell relating to the innate immune system. In order to evaluate the precise molecular immunoregulation by various strains of lactic acid bacteria (LAB) via TLR2, the swine TLR2 (sTLR2)‐expressing transfectant was constructed using human embryonic kidney (HEK) 293 cells. It is demonstrated that intact immunobiotic LAB can induce immune responses through TLR2, and that different nuclear factor‐κB (NF‐κB) activities of various strains can be accurately detected by sTLR2‐expressing HEK293 cells. Furthermore, cellular activation of NF‐κB via TLR2 is reflected in enhanced binding and uptake of LAB. The sTLR2‐expressing HEK293 cells were also useful for characterizing the expression pattern of type I helper T (Th1) and type II helper T (Th2) cytokines by the stimulation of immunobiotic LAB. These results suggest that sTLR2‐expressing HEK293 cells may be useful in certain molecular immunoassay systems for producing new physiologically functional foods with intestinal immunomodulatory abilities, such as the maintenance of Th1/Th2 polarization.  相似文献   

2.
饲料乳酸菌类益生素的作用机制和应用   总被引:17,自引:0,他引:17  
乳酸菌是一类近几年来研究较多的益生素。大量试验结果表明 ,乳酸菌中的一部分菌种对人和动物的保健和疾病治疗有效果。本文主要介绍了乳酸菌类益生素的作用机理 :提供部分必需氨基酸和维生素 ,产生酸和酶类 ,帮助宿主消化 ;调整消化道微生态平衡 ,通过颉颃作用抑制和排斥有害菌 ,以粘附抗性和竞争排斥限制有害菌体内定植 ,清除肠胃内有害物质 ;调节免疫系统功能  相似文献   

3.
ABSTRACT: This study analyzed the functional expression of TLR3 in various gastrointestinal tissues from adult swine and shows that TLR3 is expressed preferentially in intestinal epithelial cells (IEC), CD172a+CD11R1high and CD4+ cells from ileal Peyer's patches. We characterized the inflammatory immune response triggered by TLR3 activation in a clonal porcine intestinal epitheliocyte cell line (PIE cells) and in PIE-immune cell co-cultures, and demonstrated that these systems are valuable tools to study in vitro the immune response triggered by TLR3 on IEC and the interaction between IEC and immune cells. In addition, we selected an immunobiotic lactic acid bacteria strain, Lactobacillus casei MEP221106, able to beneficially regulate the anti-viral immune response triggered by poly(I:C) stimulation in PIE cells. Moreover, we deepened our understanding of the possible mechanisms of immunobiotic action by demonstrating that L. casei MEP221106 modulates the interaction between IEC and immune cells during the generation of a TLR3-mediated immune response.  相似文献   

4.
We evaluated whether a bovine intestinal epithelial (BIE) cell line could serve as a useful in vitro model system for studying antiviral immune responses in bovine intestinal epithelial cells (IECs) and for the primary screening of immunobiotic microorganisms with antiviral protective capabilities. Immunofluorescent analyses revealed that toll-like receptor 3 (TLR3) was expressed in BIE cells, and the results of real-time quantitative PCR showed that these cells respond to stimulation with poly(I:C) by up-regulating pro-inflammatory cytokines and type I interferons. In addition, we demonstrated that BIE cells are useful for the primary screening of immunobiotic lactic acid bacteria strains which are able to beneficially modulate antiviral immune responses triggered by TLR3 activation in bovine IECs. The characterization of BIE cells performed in the present study represents an important step towards the establishment of a valuable bovine in vitro system that could be used for the development of immunomodulatory feed for bovine hosts.  相似文献   

5.
Adhesion of probiotic lactic acid bacteria (LAB) has been reported to be host species specific. Host specificity is regarded as a desirable property for probiotic bacteria and therefore recommended as one of the selection criteria. However, previous studies have indicated that LAB originating from one host adhere well also to the mucus of other species. The aim of the study was to investigate the host specificity of LAB adhesion in human, canine, possum, bird and fish mucus in vitro. An in vitro mucus adhesion model was utilized in this study using immobilized mucus from faeces or intestinal material of these hosts. The results indicate that the adhesion trait was not host specific but rather was characteristic to LAB species. In conclusion, mucus adhesion properties are more dependent on the LAB strain than on the host. This suggests that animal models in probiotic adhesion assays may be more applicable to other species than thought earlier. Positive health effects facilitated by adherent probiotics in humans may also denote the possibility of similar outcome in other species and vice versa.  相似文献   

6.
The chicken gut-associated lymphoid tissue is made up of a number of tissues and cells that are responsible for generating mucosal immune responses and maintaining intestinal homeostasis. The normal chicken microbiota also contributes to this via the ability to activate both innate defense mechanisms and adaptive immune responses. If left uncontrolled, immune activation in response to the normal microbiota would pose a risk of excessive inflammation and intestinal damage. Therefore, it is important that immune responses to the normal microbiota be under strict regulatory control. Through studies of mammals, it has been established that the mucosal immune system has specialized regulatory and anti-inflammatory mechanisms for eliminating or tolerating the normal microbiota. The mechanisms that exist in the chicken to control host responses to the normal microbiota, although assumed to be similar to that of mammals, have not yet been fully described. This review summarizes what is currently known about the host response to the intestinal microbiota, particularly in the chicken.  相似文献   

7.
The intestinal mucosa represents the most active defense barrier against the continuous challenge of food antigens and pathogenic microorganisms present in the intestinal lumen. Protection against harmful agents is conferred by factors such as gastric acid, peristalsis, mucus, intestinal proteolysis, and the intestinal biota. The establishment of beneficial bacterial communities and metabolites from these complex ecosystems has varying consequences for host health. This hypothesis has led to the introduction of novel therapeutic interventions based on the consumption of beneficial bacterial cultures. Mechanisms by which probiotic bacteria affect the microecology of the gastrointestinal tract are not well understood, but at least three mechanisms of action have been proposed: production/presence of antibacterial substances (e.g., bacteriocins or colicins), modulation of immune responses and specific competition for adhesion receptors to intestinal epithelium. The rapid establishment of bacterial communities has been thought to be essential for the prevention of colonization by pathogenic bacteria. Some animal models suggest that the reduction in bacterial translocation in neonatal animals could be associated with an increase in intestinal bacterial communities and bacteriocin-like inhibitory substances produced by these species. This review emphasizes the role of the intestinal microbiota in the reduction of the gastrointestinal infections and draws heavily on studies in poultry.  相似文献   

8.
TOLL-like receptors linking innate and adaptive immune response   总被引:25,自引:0,他引:25  
Invading pathogens are controlled by the innate and adaptive arms of the immune system. Adaptive immunity, which is mediated by B and T lymphocytes, recognises pathogens by rearranged high affinity receptors. However, the establishment of adaptive immunity is often not rapid enough to eradicate microorganisms as it involves cell proliferation, gene activation and protein synthesis. More rapid defense mechanisms are provided by innate immunity, which recognises invading pathogens by germ-line-encoded pattern recognition receptors (PRR). Recent evidence shows that this recognition can mainly be attributed to the family of TOLL-like receptors (TLR). Binding of pathogen-associated molecular patterns (PAMP) to TLR induces the production of reactive oxygen and nitrogen intermediates (ROI and RNI), pro-inflammatory cytokines, and up-regulates expression of co-stimulatory molecules, subsequently initiating the adaptive immunity. In this review, we will summarize the discovery and the critical roles of the TLR family in host defense, briefly allude to signaling mechanisms mediating the response to TLR ligands, and will provide an update on current knowledge regarding the ligand specificity of these receptors and their role in immunity of domestic animals, particularly cattle.  相似文献   

9.
Probiotics are a kind of living microorganism which can be administered in feed and confer numerous health benefits to animals. Probiotics play a key role in maintaining the microbial balance of gastrointestinal, immunomodulation and pathogen defense, specific probiotics show certain degree of potential to reinforce the integrity of intestinal epithelium and regulate some immune components. The mechanism of probiotic action is an area of interest. Among all possible routes of modulation by probiotics of intestinal mediated defense responses, modulations of intestinal barrier function, innate and adaptive mucosal immune responses as well as signaling pathways are considered to play an important role in the intestinal defense responses against pathogenic bacteria. This review summarizes how probiotic bacteria interact with goblet cell-derived mucins, trefoil factors (TFFs),defensins, Toll-like receptors (TLRs), secretory immunoglobulin A (sIgA), heat shock proteins (HSPs) and P-glycoproteins (P-gp) in the gut to regulate the intestinal innate defense responses,which is regarded as the scientific basis for the future detailed study of benefits of probiotics towards the health of intestine and also dietary intervention against intestinal exposure to pathogens.  相似文献   

10.
益生菌是可添加在饲料中对动物健康产生很多益处的活微生物,其在维持胃肠道微生物平衡、免疫调节和病原体防御中起关键作用,某些特定的益生菌菌株对加强肠上皮的完整性和调节一些免疫组分也显示出一定程度的潜力。有关益生菌的作用机制是当前研究的热点,其中,在益生菌调节肠道介导的防御反应的所有可能途径中,肠屏障功能、先天和适应性黏膜免疫反应及信号传导途径被认为在针对病原菌的肠防御反应中起重要作用。作者主要针对益生菌如何与肠道内的杯状细胞黏蛋白、三叶因子(trefoil factors,tffs)、防御素、Toll样受体(Toll-like receptors,TLRs)、分泌型免疫球蛋白A(secretory immunoglobulin A,sIgA)、热休克蛋白(heat shock proteins,HSPs)和P-糖蛋白(P-glycoprotein,P-gp)相互作用而起到调节肠道先天防御反应的作用进行了概述,以期为今后研究益生菌对肠道健康及对感染病原体的肠道如何起到有益作用奠定基础。  相似文献   

11.
OBJECTIVE: To evaluate viability of a probiotic strain of Lactobacillus acidophilus in a dry dog food, determine its ability to survive transit through the gastrointestinal tract and populate the colon, and assess its effects on intestinal and systemic parameters. ANIMALS: 15 adult dogs. PROCEDURE: Dogs were sequentially fed a dry control food for 2 weeks, the same food supplemented with > 10(9) L. acidophilus for 4 weeks, and the control food again for 2 weeks. Fecal score was assessed daily, and fecal and blood samples were collected for enumeration of bacterial populations and measurement of hematologic variables. RESULTS: Recovery of L. acidophilus from the supplemented food was 71% and 63% at the start and end of the study, respectively, indicating that the bacteria were able to survive manufacture and storage. The probiotic bacterium was detected in feces via ribotyping and RNA gene sequencing during the probiotic administration phase but not 2 weeks after cessation of administration. Administration of the probiotic-supplemented food was associated with increased numbers of fecal lactobacilli and decreased numbers of clostridial organisms. There were significant increases in RBCs, Hct, hemoglobin concentration, neutrophils, monocytes, and serum immunoglobin G concentration and reductions in RBC fragility and serum NO concentration. CONCLUSIONS AND CLINICAL RELEVANCE: These data indicate that L. acidophilus can be successfully incorporated into a dry dog food, survive transit through the canine gastrointestinal tract, and populate the colon and are associated with local and systemic changes. This probiotic bacterium may have the potential to enhance intestinal health and improve immune function in dogs.  相似文献   

12.
In the present review, a new mass screening system for selecting probiotic strains from Lactobacillus (L) acidophilus group lactic acid bacteria (LAB) with strong adhesion to the human intestinal tract is described. Characteristics of antimicrobial peptides (bacteriocin), lactose‐hydrolyzing enzymes and immunostimulative oligo DNA motifs in L. gasseri strains are also described. Finally, the use of L. acidophilus LAB, selected by our screening method, that have strong adhesion to the human colonic mucosa in functional yogurt products is described. Adhesiveness to the human intestine is one of the most important characteristics of probiotic LAB. A new screening system that involves a combination of three methods is proposed: rat colonic mucin (RCM)‐micro plate assay, Carnoy's histochemical staining method and carbohydrate probe binding assay. By using an RCM‐coated poly‐vinylidene‐diflouride membrane that mimics the human colonic mucous layer, a new lectin was isolated and its structure was clarified by gene cloning. Furthermore, the structures and functions of a new cyclic bacteriocin (gassericin A), new lactose‐hydrolyzing enzymes, and new immunostimulating oligo DNA motifs from Lactobacillus gasseri (B1 subgroup) were clarified. A new functional yogurt ‘Fit down’ is proposed, that is fermented by an adhesive strain of L. acidophilus LA67 selected by our screening and contains antihypertensive peptides derived from whey proteins by protease digestion. In the future, superior functional foods containing more effective probiotic LAB are expected to be developed by the use of the proposed mass screening system.  相似文献   

13.
Invading pathogens are controlled by the innate and adaptive arms of the immune system. Adaptive immunity, mediated by B and T lymphocytes, recognises pathogens via high affinity receptors. However, the establishment of a primary adaptive immune response is not rapid enough to eradicate invading microorganisms as it involves cell proliferation, gene activation and protein synthesis. More rapid defence mechanisms are provided by innate immunity, which recognises invading pathogens by germ-line-encoded pattern recognition receptors. Recent evidence shows that this recognition can mainly be attributed to the family of TOLL-like receptors (TLR). Binding of pathogen-associated molecular patterns to TLR induces the production of reactive oxygen and nitrogen intermediates, pro-inflammatory cytokines, and up-regulates expression of co-stimulatory molecules, subsequently initiating the adaptive immunity. In this paper, we will discuss the current knowledge with regards to the TLR, and in particular the bovine family of TLR. In addition, we will show the expression of TLR mRNA in bovine antigen-presenting cell subsets, summarise the discovery and the critical roles of TLR2 in host defence against Mycobacteria, and provide evidence for a mycobacteria species-specific response of bovine macrophages.  相似文献   

14.
先天性免疫细胞由树突细胞、肥大细胞、巨噬细胞、嗜酸粒细胞和天然杀伤细胞组成。旋毛虫入侵机体后,这些先天性免疫细胞作为前沿免疫防御系统,首先快速发挥各自作用,并诱发更加有效的Th2型免疫应答,在保护机体免受重大损伤、抵制并排除旋毛虫方面起着必不可少的作用。论文详细综述了旋毛虫感染机体后,机体先天性免疫细胞的作用方式、作用机制以及相关免疫分子的研究进展。  相似文献   

15.
肾健康问题已经是重要公共卫生问题,也是容易被忽视的问题,现有研究表明,通过益生菌调整肠道菌群是肾健康维护的新型干预路径.然而,可食用益生菌在肾健康维护中的作用目前还缺乏关注.本文围绕可食用益生菌应用于肾健康相关的慢性肾炎、血透析、高尿酸及高草酸相关的基础研究进行调研,并对相关疾病干预涉及的可食用益生菌种类、作用效果和作...  相似文献   

16.
Lactobacillus rhamnosus GG (LGG) is increasingly applied in functional food products and acts as a probiotic model in nutritious and clinical studies. Increasing evidences have revealed the immune modulation of LGG on macrophages. The aim of this study is to investigate the effect of LGG on macrophage polarization of murine bone marrow‐derived macrophages (BMDMs). BMDMs were treated with 108 colony‐forming units (CFU)/ml LGG for 1.5, 3, and 6 hr. Results showed that LGG obviously upregulated the mRNA expression of M1‐associated cytokines (p < .05), including interleukin‐1 beta (IL‐1β), IL‐6, tumor necrosis factor‐alpha (TNF‐α), and inducible nitric oxide synthase (iNOS), whereas had no effect on the expression of M2‐associated markers (p > .05), including arginase 1 (Arg1), mannose receptor, and chitinase‐like protein 3 (YM1). Furthermore, LGG markedly increased the expression of pro‐inflammatory cytokines (IL‐12p40, cyclooxygenase‐2 [COX‐2], and interferon‐γ [IFN‐γ]) (p < .05) and anti‐inflammatory cytokines (IL‐10, IL‐4, and transforming growth factor‐β [TGF‐β]) (p < .05). In addition, we also found that TLR2/MyD88/MAPK signaling pathway was required for LGG‐induced M1 macrophage polarization and M1‐related cytokines expression. Together, these findings demonstrate that probiotic LGG facilitates M1 polarization of BMDMs, suggesting that LGG may have an immunotherapeutic potential in regulating the host defense against pathogen invasion.  相似文献   

17.
18.
Previously we have shown that resistance to Eimeria acervulina (EA) infection in broiler chickens was enhanced by a probiotic treatment. In the present studies, we examined cytokine and oocyst production under similar conditions using a commercial Lactobacillus-based probiotic. Day-old male broiler chicks were fed control or probiotic diets and were orally challenged with either 2×104 (Experiment 1) or 1×104 (Experiment 2) oocysts of EA at 3 weeks of age. For the first experiment, fecal oocyst shedding and IFN-γ levels in the culture supernatants of ConA-stimulated spleen lymphocytes were evaluated. Humoral and local cell-mediated immunity in the second experiment were assessed by evaluating antibody and cytokine (IFN-γ and IL-2) levels in sera and intestinal secretions on a 3-day interval post inoculation. Results showed small but significant (P<0.05) differences in cytokine levels and oocyst production but not antibody levels between the probiotic-treated and control groups. Collectively, these data suggest a positive impact of the probiotic on cellular immune responses of infected broilers as compared to control chickens resulting in enhanced resistance to EA as shown in reduced fecal oocyst shedding. The results showed an immunoregulatory effect of probiotic diets on the local cell-mediated immunity in poultry and provide a rationale for further study to investigate the beneficial effects of Lactobacillus-based probiotics in food animals.  相似文献   

19.
Intestinal epithelial cells (IECs) are the first line of defense against pathogenic microorganisms of animal organism, which are important component of mucosal mechanical barrier, immune barrier and chemical barrier, they have absorption and barrier double function. In the intestine, there are many kinds of microorganisms. According to its relationship with the host, it is divided into three types of commensal bacteria, conditional pathogenic bacteria and pathogenic bacteria, it plays an important role in the construction of intestinal barrier. Firstly, IECs identify the intestinal microbes by direct or indirect ways, and distinguish their own and non-self, it is immune tolerance to their own substances (such as, commensal bacteria), and produce specific immune response to non-self-substances (pathogenic bacteria). Both of IECs and intestinal commensal bacteria together against pathogens maintain intestinal health. When the pathogenic microorganisms invade the intestine, IECs defense pathogenic microorganisms mainly through extracellular secretions and cell surface mucus layer, and the former largely include mucin, antibacterial molecular and antimicrobial immunoglobulin. The intestinal symbiotic bacteria can resist the pathogenic microorganisms and maintain the normal intestinal mucosal barrier function through the competitive identification sites, the secretion of antimicrobial substances, the increase of mucus secretion, the induction of IECs renewal, proliferation and repair. In the process of resisting invasion of gut microbes, pathogenic microorganisms through their own movement, secretion of toxins and enzymes to destroy the intestinal epithelial barrier, and directly contact with IECs to damage them. So the interaction between IECs and intestinal bacteria maintain the intestinal homeostasis. In this paper, a review is made of the IECs and intestinal microbial structure and functional adaptations, and hope to elaborate the mechanism of intestinal microbial-epithelial cell barrier interaction.  相似文献   

20.
肠道上皮细胞(intestinal epithelial cells,IECs)是动物机体抵御病原微生物的第一道防线,是黏膜机械屏障、免疫屏障和化学屏障的重要组成部分,具有吸收和屏障双层功能。肠道中微生物数量庞大、种类繁多,根据其与宿主的关系,主要分为共生菌、条件致病菌和病原菌3类,在肠道屏障的构建中发挥重要作用。IECs首先通过直接或间接方式对肠道微生物进行识别,区别自身与非自身,对自身物质(即共生菌)免疫耐受,对非自身物质(即病原菌)产生特异性免疫反应。IECs与肠道共生菌共同抵御肠道病原微生物,维持肠道健康,病原微生物侵入肠道,IECs主要通过胞外分泌物和细胞表面黏液层双重屏障发挥作用,其中胞外分泌物主要包括黏蛋白、抗菌分子和抗微生物免疫球蛋白。肠道共生菌可以通过竞争识别位点,分泌抗菌物质,增加黏液分泌,诱导IECs更新、增殖和修复等方式抵御病原微生物,维护正常的肠黏膜屏障功能。在IECs抵御肠道病原微生物入侵过程中,病原微生物通过自身运动、分泌毒素和酶等破坏肠上皮屏障,直接接触IECs,对其进行损伤。因此IECs和肠道菌群间相互作用,共同维持肠道内环境稳态。作者就IECs和肠道微生物结构、功能的适应性变化作一综述,以期阐述肠道微生物-上皮细胞屏障互作的机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号