首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
传染性法氏囊病病毒A节段编码序列cDNA原克隆和序列分析   总被引:2,自引:0,他引:2  
对反转录-聚合酶链反应扩增克隆的传染性法氏囊病病毒超强毒Harbin毒株的A节段编码序列cDNA基因进行了核苷酸序列分析。结果,克隆的A节段基因共310bp,包括两个完整的阅读框架ORFA1和ORFA2分别编码1012氨基酸的前体蛋白VP2-4-3和145氨基酸的VP5,两者有部分重叠。  相似文献   

2.
新城疫病毒F48E9株F基因主要功能区的核苷酸序列分析   总被引:12,自引:2,他引:10  
本试验首先以NDVF48E9株的基因组RNA为模板,逆转录合成F基因cDNA第一链,再通过PCR技术扩增F基因的cDNA,然后将其克隆到质粒pUC19中,经分子量比较、酶切分析、PCR等方法证明,我们已经获得了NDVF48E9株F基因的阳性克隆。经初步序列分析,FA段核苷酸序列与参考株(D26/76)序列同源性为89%,FB段同源性为91%。二者的氨基酸序列表明,F48E9株F蛋白裂解位点与其它强毒株裂解位点氨基酸组成相同,即112RRQRR116F117。这两段序列中包含的三个Cys残基和三个潜在的糖基化位点都相当保守。  相似文献   

3.
将PRRSVCH1a株N基因用EcoRI和PstI双酶切从重组质粒pUC18ORF7切下后,插入到原核表达载体pBV220的PR、PL启动子下游,得到重组表达质粒pBV220ORF7。转化了pBV220ORF7的大肠杆菌JM83经诱导培养后,用SDSPAGE和Westernblot检测表达产物。结果表明PRRSVCH1a株的N基因在原核载体上得到高效表达,表达产物占菌体总蛋白的153%。表达蛋白可望成为有价值的PRRS诊断抗原。  相似文献   

4.
对我国鸡痘病毒(FPV)282E4株基因组2.9kb Bam HI片段进行了序列测定与分析。结果表明,该片段全长2923bp,A+T含量为72.08%,含6个完整的开放读码框架(ORF)和2个不完整的ORF,最大的ORF所编码多肽的相对分子质量为24600。在2个ORF在上游存在痘苗病毒晚毒启动子的保守序列TAAAT,在6个ORF的下游和2个ORF的编码区内存在痘苗病毒早期转录终止信号T5NT。把  相似文献   

5.
猪瘟病毒保护性抗原E2基因的克隆及在原核细胞中的表达   总被引:8,自引:0,他引:8  
应用RT-PCR分两段扩增猪瘟病毒(HCV)石门株E2基因,然后对其进行了克隆。利用两个片段重叠部分的单一BglⅡ位点,将它们连接成为完整的E2基因,并克隆到PUC19质粒中,获得重 质粒PHCF2。另设计一对引物,以PHCF2为模板扩增出不含信号肽的E2基因,然后将其克隆到表达载体质粒pBV220和PET_28a(+)中,获得重组质粒PBVE2和PETE2,用酶切,PCR和序列分析鉴定E2基因插  相似文献   

6.
鸡痘 病毒282E4株基因组3.6kb BamHI片段序列测定与分析   总被引:1,自引:1,他引:0  
本实验将我国FPV282E4株片段利用DNA测序仪进行了序列测定。经DNASISV3.0分析,该片段A+T含量为60.77%,内含有8个主要的ORFs。用GoldkeyV3.0软件比较了VVP7.5早期4启动子,FPV4b晚期启动子.L2R早/晚期启动子和一个早/晚期启动子与各个ORF上游100bp区域的同源性,没有发现有意义的 同源序列;该片段的核苷酸序列和每个ORF所编码的氨基酸序列在EMBL核酸序列库和  相似文献   

7.
本研究对我国华东地区猪生殖和呼吸综合征病毒(PRRSV)分离株S1主要结构蛋白基因(ORF5~7)进行了PCR扩增和DNA测序分析。结果表明,长度为1520bpDNA序列含有3个阅读框ORFs,即ORF5、ORF6和ORF7,ORF5和ORF6及ORF6和ORF7间有部分碱基重叠,且与欧洲型和美洲型PRRSV相似。ORFs推导的氨基酸序列与美国VR2332和欧洲LV毒株同源性分析为99%~100%和59%~78%。ORFs预测的蛋白质分子量、等电点、糖基化位点、亲水性分布图及跨膜螺旋区与VR2332毒株相似。  相似文献   

8.
禽白血病病毒囊膜基因gp85片段的克隆与鉴定   总被引:11,自引:0,他引:11  
用PCR从禽白血病病毒(Avian Leukosis Virus,ALV)RAV-1,RAV-2感染或未感染的SPF鸡胚成纤维细胞(CEF)分别扩增出1.2kb囊膜基因片段,分别将上述PCR产物的KpnⅠ/SaⅡ酶切片段克隆到质粒pGEM-3zf( )中得到3个重组子即pGEM-3zf-RAV-1env、pGEM-3zf-RAV-2env和pGEM-3zf-Eenv。酶切分析和序列测定结果表明克隆的PCR片段分别来自ALV RAV-1,RAV-2和内源生E亚群病毒,这为病毒囊膜基因gp85的表达及个体鸡遗传抗性的鉴定打下基础。  相似文献   

9.
减蛋综合征病毒33K蛋白基因克隆及结构分析   总被引:2,自引:0,他引:2  
纯化的减蛋综合征病毒(EDSV)DNA经HindⅢ水解、0.8%琼脂糖电泳后,回收各DNA条带并克隆至pBluescriptKS载体,建立了EDSV基因文库,对33K蛋白基因进行了分析。本研究证实,EDSV33K蛋白基因含有2个外显子,与羊腺病毒(OAV)33K蛋白比较,N端编码产物的同源性为30.8%,C端的为60%。用RT-PCR扩增33KmRNA和cDNA克隆及序列分析证实,EDSV33K蛋白含有82碱基(nt)的内含子,去掉内含子33K蛋白基因能形成完整的ORF,其编码产物由177氨基酸(aa)组成,推测分子质量为2.06×104,与人5型腺病毒和OAV的同源性分别为28.1%和44.7%。  相似文献   

10.
传染性法氏囊病病毒VP2基因高变区序列分析   总被引:3,自引:0,他引:3  
根据传染性法氏囊病病毒(IBDV)VP2基因CDNA序列,在VP2基因高变区设计一对引物,用RT-PCR方法扩增IBDV分离株JS3和JS4。将扩增片段克隆后以双脱氧链末端终止法测定核苷酸旬。JS3和JS4的同源性最高达98%。与已发表的vvIBDV,IBDV变异要BDV经典株为IBDV弱毒株核苷酸序列的同尖拨天92 ̄98%之间,根据IBDV的大ORF推导出该片段蛋白的氨基酸序更,JS3和JS4的  相似文献   

11.
The objective of this study was to investigate the effect of supplemental tribasic copper chloride (Cu(2)(OH(3))Cl; TBCC) vs. Cu sulfate (CuSO(4)) on Cu status and voluntary forage DMI in growing heifers. Two 90-d experiments were conducted using 48 non-pregnant, crossbred heifers (24 heifers/experiment; 355 +/- 10.7 and 309 +/- 9.9 kg for Exp. 1 and 2, respectively). In each experiment, 3 supplemental Cu treatments were randomly allocated to heifers in individual pens consisting of (1) 100 mg of Cu/d from CuSO(4), (2) 100 mg of Cu/d from TBCC, or (3) 0 mg of Cu/d. The 2 experiments differed by the form of supplement used to deliver the Cu treatments (corn- vs. molasses-based supplements for Exp. 1 and 2, respectively). Supplements were formulated and fed to provide equivalent amounts of CP and TDN daily but differed in their concentration of the Cu antagonists, Mo (0.70 vs. 1.44 mg/kg), Fe (113 vs. 189 mg/kg), and S (0.18 vs. 0.37%) for corn- and molasses-based supplements, respectively. All heifers were provided free-choice access to ground stargrass (Cynodon spp.) hay. Jugular blood and liver biopsy samples were collected on d 0, 30, 60, and 90 of each experiment. Heifer BW was collected on d 0 and 90. Heifer ADG was not affected by Cu treatment (average = 0.22 +/- 0.11 and 0.44 +/- 0.05 kg for Exp. 1 and 2, respectively; P > 0.20). In Exp. 1, heifers provided supplemental Cu, independent of source, had greater (P < 0.05) liver Cu concentrations on d 60 and 90 compared with heifers provided no supplemental Cu. In Exp. 2, average liver Cu concentrations were greater (P = 0.04) for heifers receiving supplemental Cu compared with heifers receiving no Cu; however, all treatments experienced a decrease in liver Cu concentration over the 90-d treatment period. Plasma ceruloplasmin concentrations did not differ in Exp. 1 (P = 0.83) but were greater (P = 0.04) in Exp. 2 for heifers receiving supplemental Cu compared with heifers receiving no Cu. In Exp. 1, voluntary forage DMI was greater (P < 0.05) for heifers provided supplemental Cu, independent of source, compared with heifers provided no Cu. In contrast, voluntary forage DMI was not affected (P > 0.10) by Cu supplementation in Exp. 2. These data imply that CuSO(4) and TBCC are of similar availability when offered to growing beef heifers in both corn- and molasses-based supplements. However, corn- and molasses-based supplements appear to affect Cu metabolism differently. These impacts may affect voluntary forage DMI in growing beef heifers.  相似文献   

12.
Sixty Angus (n = 29) and Angus-Sim-mental cross (n = 31) steers, averaging 9 mo of age and 277 kg of initial BW, were used in a 148-d study to determine the bioavailability of copper glycinate (CuGly) relative to feed-grade copper sulfate (CuSO(4)) when supplemented to diets high in S and Mo. Steers were blocked by weight within breed and randomly assigned to 1 of 5 treatments: 1) control (no supplemental Cu), 2) 5 mg of Cu/kg of DM from CuSO(4), 3) 10 mg of Cu/kg of DM from CuSO(4), 4) 5 mg of Cu/kg of DM from CuGly, and 5) 10 mg of Cu/kg of DM from CuGly. Steers were individually fed a corn silage-based diet (analyzed 8.2 mg of Cu/kg of DM), and supplemented with 2 mg of Mo/kg of diet DM and 0.15% S for 120 d (phase 1). Steers were then supplemented with 6 mg of Mo/kg of diet DM and 0.15% S for an additional 28 d (phase 2). Average daily gain and G:F were improved by Cu supplementation regardless of source (P = 0.01). Final ceruloplasmin, plasma Cu, and liver Cu values were greater (P < 0.05) in steers fed supplemental Cu compared with controls. Plasma Cu, liver Cu, and ceruloplasmin values were greater (P < 0.05) in steers supplemented with 10 mg of Cu/kg of DM vs. those supplemented with 5 mg of Cu/kg of DM. Based on multiple linear regression of final plasma Cu, liver Cu, and ceruloplasmin values on dietary Cu intake in phase 1 (2 mg of Mo/kg of DM), bioavailability of Cu from CuGly relative to CuSO(4) (100%) was 140 (P = 0.10), 131 (P = 0.12), and 140% (P = 0.01), respectively. Relative bio-availability of Cu from CuGly was greater than from CuSO(4) (P = 0.01; 144, 150, and 157%, based on plasma Cu, liver Cu, and ceruloplasmin, respectively) after supplementation of 6 mg of Mo/kg of DM for 28 d. Results of this study suggest that Cu from CuGly may be more available than CuSO(4) when supplemented to diets high in S and Mo.  相似文献   

13.
肉仔鸡铜需要量的研究   总被引:7,自引:0,他引:7  
为研究肉仔鸡对铜的需要量,进行了此试验。试验采用三重复二因子试验设计,研究不同性别、不同生长发育阶段肉仔鸡对铜的需要量。试验用1日龄AA肉仔鸡396只,公母各半,按体重等级随机分组,每组11只,共36组。采用玉米—豆饼型基础日粮,试验期共8周,分3个阶段进行;各阶段日粮中铜(mg/kg)、代谢能(MJ/kg)、粗蛋白质(%)的含量如下:1~2周,4.57、13.08、20.41;3~6用,4.29、13.25、19004;7~8周,3.99、13.42、17.57。以硫酸铜为外加铜源,补铜水平分别为0.2、4、6、8mg/kg。试验结果表明:根据最洼生产性能反应组,公、母肉仔鸡3个生长发育阶段对铜的需要量分别为(mg/kg,以日粮含铜浓度表示,下同):8.57和8.57,8.29和8.29,5.99和11.99;以组织铜浓度为评价指标,得到3个生长发育阶段公、母肉仔鸡日粮铜的适宜量分别为(mg/kg),8~9和8~10,8~10和8~10,8~11和9~11;以体铜沉积率为评价指标,得到的需要量分别为(mg/kg):6.57和8.57,8.29和8.29,11.99和9.99。综合分析各指标得到的数据可知,不同生长发育阶段公、母肉仔鸡对铜的需要量基本一致。根据本试验结果,推荐铜给量分别为:1~2周,9mg/kg:3~6周,9 mg/kg:7~8周,10mg/kg。  相似文献   

14.
Growing male Synthetic I (1/2 Finnish Landrace x 1/4 Dorset x 1/4 Rambouillet) lambs were used in two experiments (64 lambs in Exp. 1 and 63 in Exp. 2) to test the hypothesis that dietary CP level (9 or 14% of diet as fed) and(or) clinoptilolite (clino; 0 or 2% of diet) affects growth and tissue mineral concentrations of growing lambs fed supplemental Cu. Lambs were individually fed their respective diets ad libitum and killed after 12 wk (Exp. 1) or 16 wk (Exp. 2) to obtain carcass measurements, organ weights and liver mineral concentrations. In Exp. 1, 20 ppm added Cu (as CuSO4.5H2O) increased mortality and depressed BW gain (P less than .01) and daily feed intake (P less than .05) in the presence or absence of clino and at both levels of CP. Liver Cu concentration was greater (P less than .01) in lambs fed added Cu than in those not fed Cu (408 ppm vs 110 ppm, respectively). Neither CP nor clino affected liver Cu concentration. Clinoptilolite increased daily gain of lambs fed high CP but not low CP (P less than .01). In Exp. 2, clino in the diet had no effect on daily gain or daily feed, but 20 ppm Cu addition depressed daily gain (P less than .01) and gain/feed (P less than .07). Organ weights and levels of trace elements other than Cu in the liver generally were not affected by diet in either experiment. It is concluded that high dietary CP or 2% dietary clino did not protect against toxic signs of Cu when Cu was added to the basal diet (10 ppm Cu) at 10 or 20 ppm.  相似文献   

15.
Four experiments were conducted to determine the interactive effects of pharmacological amounts of Zn from ZnO and Cu from organic (Cu-AA complex; Cu-AA) or inorganic (CuSO(4)) sources on growth performance of weanling pigs. The Cu was fed for 4 (Exp. 1) or 6 (Exp. 2, 3, and 4) wk after weaning, and Zn was fed for 4 (Exp. 1) or 2 (Exp. 2, 3, and 4) wk after weaning. Treatments were replicated with 7 pens of 5 or 6 pigs per pen (19.0 ± 1.4 d of age and 5.8 ± 0.4 kg of BW, Exp. 1), 12 pens of 21 pigs per pen (about 21 d of age and 5.3 kg of BW, Exp. 2), 5 pens of 4 pigs per pen (20.3 ± 0.5 d of age and 7.0 ± 0.5 kg of BW, Exp. 3), and 16 pens of 21 pigs per pen (about 21 d of age and 5.7 kg of BW, Exp. 4). In Exp. 1 and 2, Cu-AA (0 vs. 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 2 × 2 factorial arrangement. Only Exp. 1 used in-feed antibiotic (165 mg of oxytetracycline and 116 mg of neomycin per kilogram feed), and Exp. 2 was conducted at a commercial farm. In Exp. 3, sources of Cu (none; CuSO(4) at 250 mg/kg of Cu; and Cu-AA at 100 mg/kg of Cu) and ZnO (0 vs. 3,000 mg/kg of Zn) were used in a 3 × 2 factorial arrangement. In Exp. 4, treatments were no additional Cu, CuSO(4) at 315 mg/kg of Cu, or Cu-AA at 100 mg/kg of Cu to a diet supplemented with 3,000 mg/kg of Zn from ZnO and in-feed antibiotic (55 mg of carbadox per kilogram of feed). In Exp. 1 and 2, both Zn and Cu-AA improved (P < 0.001 to P = 0.03) ADG and ADFI. No interactions were observed, except in wk 1 of Exp. 2, where Zn increased the G:F only in the absence of Cu-AA (Cu-AA × Zn, P = 0.04). A naturally occurring colibacillosis diarrhea outbreak occurred during this experiment. The ZnO addition reduced (P < 0.001) the number of pigs removed and pig-days on antibiotic therapy. In Exp 3, ADFI in wk 2 was improved by Zn and Cu (P < 0.001 and P = 0.09, respectively) with no interactions. In wk 1, G:F was reduced by ZnO only in the absence of Cu (Cu × Zn, P = 0.03). Feeding Zn decreased fecal microbiota diversity in the presence of CuSO(4) but increased it in the presence of Cu-AA (Cu source × Zn, P = 0.06). In Exp. 4, Cu supplementation improved the overall ADG (P = 0.002) and G:F (P < 0.001). The CuSO(4) effect on G:F was greater (P < 0.001) than the Cu-AA effect. Our results indicate that pharmacological amounts of ZnO and Cu (Cu-AA or CuSO(4)) are additive in promoting growth of pigs after weaning.  相似文献   

16.
AIM: To determine changes in serum and liver copper concentrations in postnatal, weaner, yearling, and mature deer after grazing pasture topdressed with copper (Cu) at two rates of application of copper sulphate (CuSO4(.)5H2O), and following oral administration of copper oxide (CuO) wire particles to some of the deer. METHODS: In mid-March 2000 (Year 1), 1.1-ha paddocks (two/treatment) of ryegrass/white clover pasture received either 0 (Control), 6 (Low) or 12 (High) kg CuSO4(.)5H2O /ha applied with 250 kg potash superphosphate/ha. They were grazed by 4-month-old red deer hinds (n=11/treatment) from mid-April 2000 until early March 2001. In mid-March 2001 (Year 2), the pastures were topdressed again as for Year 1, and the original hinds, now yearlings which had grazed as a single group between studies, were returned to their respective treatments in mid-April 2001 and remained on the trial until mid-March 2002. They were mated during April/May. The pastures were also grazed by pregnant mature hinds (n=8/treatment) from mid-May 2001. As the Cu status (i.e. liver Cu concentration) of the yearling hinds on the pasture treated with 6 kg CuSO4(.)5H2O/ha was not significantly different from the untreated animals, in late July 2001 the yearling and mature deer on this treatment were treated orally with 10 g CuO wire particles. The mature hinds calved in November and the yearling hinds in December. Pasture samples were collected at about monthly intervals to determine concentrations of Cu and other minerals. In Year 1, liver biopsies and blood samples were collected at 4-6-weekly intervals for determination of Cu concentrations. In Year 2, samples were collected similarly at 6-12-weekly intervals. Liver biopsies and blood were also collected from progeny, along with milk from their dams. Liveweights were determined at 3-7-monthly intervals, as well as data on calving/mortality rates. RESULTS: Pasture Cu concentrations before the application of CuSO4(.)5H2O were 6-9 mg Cu/kg dry matter (DM) and remained at this level in the untreated Control paddocks throughout the study. In Year 1, 28 days after treatment, pasture Cu concentration was 25 and 35 mg Cu/kg DM for the Low and High treatments, respectively; while at the same time for the same treatments in Year 2 it was 20 and 60 mg/kg DM, respectively. A second 60 mg Cu/kg DM peak also occurred on Day 85 in Year 2 with the High treatment. The pasture Cu concentration returned to 6-9 mg/kg DM, and there were no differences between treatments at Days 80 and 150 in Years 1 and 2, respectively. In Years 1 and 2, the Low treatment had no significant effect on the Cu status of the weaner and yearling hinds, respectively, when compared with that of animals grazing the untreated Control pastures. Weaner (Year 1) and yearling (Year 2) deer on the High treatment had significantly higher mean serum and liver Cu concentrations in the late winter and spring period when compared with those on untreated Control pastures. CuO wire particles increased the mean serum Cu concentration at Days 60 and 180, and liver Cu concentration at Day 60, in yearling hinds. A similar effect was observed in mature hinds. Regardless of Cu treatment, the liver Cu concentration of the 1-4-week-old progeny was markedly greater (p<0.001) than that of their dams, and then decreased significantly until weaning in March. In progeny of treated yearling hinds, but not mature hinds, serum and liver Cu concentrations were significantly higher (p=0.013) than progeny of untreated dams. CONCLUSION: Topdressing pastures with CuSO4(.)5H2O at a rate of 12 kg/ha, but not 6 kg/ha, in mid-March was effective in increasing the Cu status of weanling hinds; while pastures topdressed with 12 kg CuSO4(.)5H2O /ha in mid-March and dosing hinds with 10 g CuO in late July were effective in increasing the Cu status of pregnant hinds, and in the case of the yearling hinds, significantly improved the Cu status of their progeny from birth to weaning.  相似文献   

17.
The experiment was conducted to assess the effects of dietary supplementation of Cu on the growth performance, digestive enzymes, tissue minerals and absorptive transporters in small intestinal mucosa of weanling pigs. One hundred crossbred pigs weaned at 28 ± 2 d of age were assigned randomly to one of the following diets with 5 replicates: corn-soybean basal diet with 10, 100, 175, 250 mg/kg of Cu as CuSO4•5H2O. The results showed that 250 mg/kg Cu had a positive effect (P < 0.05) on average daily gain, daily feed intake and ratio of gain/feed. Compared to 10 mg/kg Cu, higher Cu had significant effect on the apparent digestibility of protein and fat (P < 0.05). The supplementing of Cu improved amylase and lipase activity in jejunum content and lipase in pancreas (P < 0.05) and had no effect on intestinal morphology. The liver Cu elevated approximately 4-fold in pigs fed diet with 250 mg/kg Cu compared with pigs fed diet with 10 mg/kg Cu, no increases were observed in pigs receiving the lower level of Cu (100 and 175 mg/kg). Both Fe and Zn contents in kidney and liver were not affected by Cu supplementation. There was no positive effect (P > 0.05) of Cu supplementation on PepT1 (peptide transporter 1) and SGLT1 (sodium/glucose cotransporter) mRNA abundance in intestinal mucosa. However, higher supplementing level (250 mg/kg) significantly elevated the DMT1 (divalent metal transporter) mRNA abundance in duodenum mucosa. These results suggested that dietary supplementation with 250 mg/kg Cu could improve growth performance, nutrient digestibility and intestinal enzyme activities of weanling pigs.  相似文献   

18.
Estimated copper requirements of angus and simmental heifers   总被引:7,自引:0,他引:7  
In Exp. 1, Simmental (n = 21) and Angus (n = 21) heifers, approximately 9 mo of age, were used in a 160-d study to determine the effect of dietary Cu on growth and Cu status. Two- or three-yr-old first-calf heifers (21 Angus and 21 Simmental) entering into their last trimester of pregnancy were used in Exp. 2 to estimate Cu requirements of the two breeds during gestation and early lactation. Treatments in both studies consisted of 0 (control), 7, or 14 mg of supplemental Cu (as CuSO4)/kg of DM. The control corn silage-based diets contained 6.4 and 4.4 mg of Cu/kg of DM in Exp. 1 and 2, respectively, and 1.2 mg of Mo/kg. Dietary Cu did not affect performance in either breed in Exp. 1. Copper supplementation generally did not affect plasma Cu concentrations in Angus heifers, but increased (P < 0.05) plasma Cu in Simmental heifers from d 37 until the end of Exp. 1. Final liver Cu concentrations were lower (P < 0.05) than initial concentrations in control Angus and Simmental heifers; however, liver Cu increased (P < 0.01) in Cu-supplemented heifers. In Exp. 2, Cu supplementation of the control diet increased (P < 0.05) plasma Cu during gestation and greatly increased (P < 0.01) liver Cu in both breeds. Calves born to cows not supplemented with Cu also had lower plasma Cu concentrations than Cu-supplemented calves by 73 d of age. In both studies, control Simmental heifers had lower (P < 0.05) plasma Cu concentrations than Angus on most sampling dates. When Cu was supplemented at 7 or 14 mg/kg of DM,few differences in plasma Cu concentrations were observed between breeds. Results suggest that Angus heifers have a lower minimal Cu requirement than Simmental. Based on liver Cu, the control diets containing 4.4 or 6.4 mg of Cu/kg of DM did not meet the Cu requirement of either breed during gestation and lactation or growth. Addition of 7 mg of Cu/kg of DM to the control diets met Cu requirements of both breeds.  相似文献   

19.
The experiment was conducted to assess the effects of dietary supplementation of Cu on the growth performance,digestive enzymes,tissue minerals and absorptive transporters in small intestinal mucosa of weanling pigs.One hundred crossbred pigs weaned at 28±2 d of age were assigned randomly to one of the following diets with 5 replicates:corn-soybean basal diet with 10,100,175,250 mg/kg of Cu as CuSO4·5H2O.The results showed that 250 mg/kg Cu had a positive effect (P0.05) on average daily gain,daily feed intake and ratio of gain/feed.Compared to 10 mg/kg Cu,higher Cu had significant effect on the apparent digestibility of protein and fat (P0.05).The supplementing of Cu improved amylase and lipase activity in jejunum content and lipase in pancreas (P0.05) and had no effect on intestinal morphology.The liver Cu elevated approximately 4-fold in pigs fed diet with 250 mg/kg Cu compared with pigs fed diet with 10 mg/kg Cu,no increases were observed in pigs receiving the lower level of Cu (100 and 175 mg/kg).Both Fe and Zn contents in kidney and liver were not affected by Cu supplementation.There was no positive effect (P0.05) of Cu supplementation on PepT1 (peptide transporter 1) and SGLT1 (sodium/glucose cotransporter) mRNA abundance in intestinal mucosa.However,higher supplementing level (250 mg/kg) significantly elevated the DMT1 (divalent metal transporter) mRNA abundance in duodenum mucosa.These results suggested that dietary supplementation with 250 mg/kg Cu could improve growth performance,nutrient digestibility and intestinal enzyme activities of weanling pigs.  相似文献   

20.
Performance, immune response, and liver trace mineral status were measured in growing heifers supplemented with different copper (Cu) concentrations and sources when diets contained the Cu antagonists Mo, S, and Fe. Sixty Angus x Hereford heifers were managed in two groups for 112 d and were either individually fed diets and mineral treatments using individual feeding stalls (Stall) or pen-fed grass hay and individually supplemented mineral treatments (Pen). The basal diet of grass hay, rolled barley, and soybean meal was analyzed to contain 6 mg Cu/kg DM. The treatments consisted of 1) no supplemental Cu (Control); 2) 49 mg Cu/kg DM from Cu sulfate (i.e. approximately five times NRC recommendation for Cu from CuSO4) (5X-SO4); 3). 22 mg Cu/kg DM from CuSO4 (2X-SO4); 4). 22 mg Cu/kg DM from a combination of 50% CuSO4 and 50% Cu-amino acid complex (50-50); and 5). 22 mg Cu/kg DM from a combination of 25% CuSO4, 50% Cu-amino acid complex, and 25% Cu oxide (CuG) (25-50-25). All heifers were supplemented with the Cu antagonists Mo (10 mg/kg DM), S (2,900 mg/kg DM), and Fe (500 mg/kg DM). These diets resulted in dietary Cu:Mo ratios that averaged 0.5:1 for Control, 4.5:1 for the 5X-SO4, and 2.4:1 for 2X-SO4, 50-50, and 25-50-25. Rate and efficiencies of gain and cell-mediated immune function were not different (P > 0.10) among treatments. Data suggest supplements containing combinations of inorganic and complexed Cu interacted differently in the presence of Mo, S, and Fe. Heifers consuming the 25-50-25 supplement in the Stall group initially lost hepatic Cu rapidly but this loss slowed from d 50 to d 100 compared to the Control (P = 0.07), 50-50 (P < 0.05), and 2X-SO4 (P < 0.05) heifers and was similar (P > 0.10) to that in the 5X-SO4 heifers. In the Pen group, total hepatic Cu loss tended to be greater for 25-50-25 and 2X-SO4 compared to 5X-SO4 heifers (P = 0.09 and P = 0.06, respectively); Cu loss in the 50-50 heifers was similar (P > 0.10) to that in the 5X-SO4 heifers. This suggests that supplementing combinations of inorganic and amino acid-complexed Cu was as effective in limiting hepatic Cu loss during antagonism as was increasing dietary Cu levels to five times the NRC recommendation. A combination of 25% CuSO4 , 50% Cu-amino acid complex, and 25% CuO limited liver accumulation of Mo compared to supplements without CuO and could provide a strategic supplementation tool in limiting the systemic effects of Cu antagonism in beef cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号