首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus). METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 x 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial. RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03-3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 micromol/L. In the deer grazing the control Mo pasture, this increased to 10.3 micromol/L on Day 112, before decreasing to 6.4 micromol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 micromol/L, respectively, on Day 112, and 2.5 and 3.3 micromol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 micromol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 micromol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Mo-treated pastures, liver Cu concentrations decreased to 55 and 52 micromol/kg fresh tissue, respectively, on Day 112, and 21 and 20 micromol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM. CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to > or =4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.  相似文献   

2.
AIM: To determine the effect of increasing molybdenum (Mo) intakes on serum and liver copper (Cu) concentrations and growth rates of grazing red deer (Cervus elaphus).

METHODS: Molybdenum- and Cu-amended fertilisers were applied to six 1.1-ha paddocks in a 3 × 2 design. Three levels of Mo were applied on two paddocks at each level in mid April (designated Day 1); levels were: none (control), 0.5 (medium) and 1.0 (high) kg Mo/ha as sodium molybdate. In late May (Day 39), two levels of Cu (none and 3.0 kg Cu/ha, as copper sulphate) were applied to each of the three levels of Mo-treated paddocks. Pasture Mo, Cu and sulphur (S) concentrations were measured at about fortnightly intervals. In late June (Day 74), ten 6-month-old red deer hinds were placed on the six experimental pastures, and serum and liver Cu concentrations were monitored at about monthly intervals for 102 days. The hinds were weighed on four occasions during the trial.

RESULTS: Mean pasture Mo concentrations on Day 56 were 2, 4.6 and 11.3 mg/kg dry matter (DM) for the untreated control, medium and high Mo-treated pastures, respectively. Pasture Cu concentration was 95 mg/kg DM on Day 59, 53 mg/kg DM on Day 90, and 9 mg/kg DM by Day 153. Mean S concentration in pasture was 3.3 (range 3.03–3.45) g/kg DM. Copper application to pasture had no significant effect on serum and liver Cu concentrations in deer so data were pooled within Mo treatment. Mean initial (Day 74) serum Cu concentration was 9.2 µmol/L. In the deer grazing the control Mo pasture, this increased to 10.3 µmol/L on Day 112, before decreasing to 6.4 µmol/L on Day 176. In deer grazing the medium and high Mo-treated pastures, mean serum Cu concentrations were 3.8 and 3.9 µmol/L, respectively, on Day 112, and 2.5 and 3.3 µmol/L, respectively, on Day 176. Mean initial (Day 74) liver Cu concentration was 131 µmol/kg fresh tissue. In the deer grazing the control Mo pasture, this declined to 120 and 52 µmol/kg on Days 112 and Day 176, respectively. In deer grazing the medium and high Motreated pastures, liver Cu concentrations decreased to 55 and 52 µmol/kg fresh tissue, respectively, on Day 112, and 21 and 20 µmol/kg fresh tissue, respectively, on Day 176. Mean serum and liver Cu concentrations were not significantly different between deer grazing the medium and high Mo-treated pastures, and were lower (serum p=0.003, liver p<0.001) in those groups than in deer grazing the untreated control pastures. No clinical signs of Cu deficiency associated with lameness were observed. Deer grazing pastures that had Mo concentrations >10 mg/kg DM had lower (p=0.002) growth rates (100 vs 130 g/day) than those on pastures containing <2.4 mg Mo/kg DM.

CONCLUSION: Increasing pasture Mo concentrations from 2 mg/kg DM to ≥4.6 mg/kg DM significantly reduced serum and liver Cu concentrations in grazing deer. Reduced growth rate was observed at pasture Mo concentrations >10 mg/kg DM.  相似文献   

3.
To assess the impact of S fertilization on bahiagrass (Paspalum notatum) quality and Cu metabolism in cattle, two studies were conducted during the summer grazing season (1999 and 2000). Pasture replicates (16.2 ha; n = 2/treatment) received the same fertilizer treatment in each growing season, consisting of 1) 67 kg N/ha from ammonium sulfate (AS), 2) 67 kg N/ha from ammonium nitrate (AN), and 3) control (no fertilizer; C). Forage sampling was conducted at 28-d intervals following fertilization by the collection of whole plants (four samples/pasture) in randomly distributed 1-m2 grazing exclusion cages and analyzed for CP, in vitro organic matter digestibility, S, P, Ca, K, Mg, Na, Fe, Al, Mn, Cu, and Zn. To determine the effect of fertilizer treatment on liver trace mineral concentrations in grazing cattle, random liver tissue samples were collected (n = 12; four/treatment) at the start and end of the study period in 2000. Ammonium sulfate fertilization increased (P < 0.001) forage S concentration in both years. Plant tissue N concentrations were increased by N fertilization, regardless of source, in 2000, but not in 1999. Cows grazing AS pastures had lower (P < 0.05) liver Cu concentrations at the end of the study period in 2000 compared to AN and C. In Exp. 2, 37 Cu-deficient heifers grazing AS fertilized pastures were obtained from the same location and allocated to one of two treatments, consisting of supplements providing 123 mg/d of either inorganic (Cu sulfate; n = 12) or organic (Availa-Cu; n = 15) Cu. Treatments were delivered for 83 d. Liver Cu increased over time in all heifers regardless of treatment; however, heifers supplemented with Availa-Cu tended (P = 0.09) to have higher mean liver Cu concentrations than those receiving Cu sulfate. The results of these studies indicate that AS fertilization of bahiagrass increases forage S concentrations. When provided free-choice access to a complete salt-based trace mineral supplement, cows grazing AS-fertilized pastures had lower liver Cu concentrations than cows grazing pastures fertilized with AN; upon removal from high-S pastures, cattle were able to respond to Cu supplementation.  相似文献   

4.
Thirty yearling Santa Gertrudis-sired heifers (average initial weight 238 kg) were continuously grazed (five heifers/pasture) on six 2-ha oat-wheat small grain pastures for 112 d to determine the effect of fertilization of pastures with urea (U) vs ammonium sulfate (AS) on mineral status and performance of heifers. Pastures were fertilized with either U, at 200 kg/ha, or AS, at 438 kg/ha, to provide 92 kg of N/ha in November 1987 and March 1988. Ammonium sulfate provided 107 kg of S/ha. Forage samples were collected during each month. Heifers were initially weighed following an overnight fast and at the end of four consecutive 28-d intervals (Periods 1 to 4). Serum and ruminal fluid were collected on d 56 and 112. Pastures fertilized with AS had a greater (P less than .10) in vitro dry matter disappearance during Periods 2 and 3. Ammonium sulfate-fertilized pastures had greater than (P less than .05) S concentrations from January 29 through termination of the trial. There were no differences in ADG (P less than .28) or gain/ha (GPH; P less than .43) over 112 d; however, heifer ADG was greater (P less than .08) in Period 3 and tended to be greater (P less than .16) in Period 2 for those animals grazing U-fertilized pastures. Pastures receiving AS produced less (P less than .04) GPH during Period 2. Ammonium sulfate fertilization in this trial had no effect on forage K, Ca, P, Mg, Cu, or Mo mineral concentrations or on serum mineral and ruminal VFA concentrations, but it did result in an increase in IVDMD and a trend for decreased ADG apparently associated with a decrease in forage intake.  相似文献   

5.
Two studies were conducted to evaluate the availability of dietary Cu offered to growing beef cattle consuming molasses-based supplements. In Exp. 1, 24 Braford heifers were assigned randomly to bahiagrass (Paspalum notatum) pastures (two heifers/pasture). Heifers were provided 1.5 kg of TDN and 0.3 kg of supplemental CP/heifer daily using a molasses-cottonseed meal slurry. Three treatments were randomly assigned to pastures (four pastures/treatment), providing 100 mg of supplemental Cu daily in the form of either CuSO4 (inorganic Cu) or organic-Cu. A third treatment offered no supplemental Cu (negative control). Heifer BW was collected at the start and end of the study. Jugular blood and liver samples were collected on d 0, 29, 56, and 84. In Exp. 2, 24 Brahman-crossbred steers were fed the same molasses-cottonseed meal supplement at the same rates used in Exp. 1. Steers were housed in individual pens (15 m2) with free-choice access to stargrass (Cynodon spp.) hay. Four Cu treatments were assigned to individual steers (six pens/treatment) providing 1) 10 ppm of Cu from an organic source; 2) 10 ppm Cu from Tri-basic Cu chloride (TBCC); 3) 30 ppm of Cu from TBCC; or 4) 30 ppm of Cu, a 50:50 ratio of TBCC and organic Cu. Body weights and jugular blood and liver samples were collected on d 0, 24, 48, and 72. In Exp. 1, liver Cu concentrations did not differ between heifers supplemented with inorganic and organic Cu. Each source resulted in increased (P < 0.05) liver Cu concentrations compared with the unsupplemented control. Plasma ceruloplasmin concentrations were higher (P < 0.05) for Cu-supplemented heifers, independent of Cu source. Heifer ADG tended (P = 0.11) to increase with Cu supplementation compared with the unsupplemented control. In Exp. 2, liver Cu was greater (P < 0.05) on d 24, 48, and 72 for steers consuming 30 vs. 10 ppm of Cu. Steers supplemented with organic Cu had lower DMI than steers supplemented with 10 or 30 ppm of TBCC. These data suggest that the inorganic and organic Cu sources evaluated in these studies were of similar availability when offered in molasses supplements. A dietary Cu concentration greater than 10 ppm might be necessary to ensure absorption in beef cattle fed molasses-based supplements.  相似文献   

6.
A 2-year longitudinal observational study of 15 red deer farms was carried out in New Zealand from March 1992. Both years combined, 3364 adult and 653 yearling hinds were diagnosed pregnant in June by ultrasound scanning and monitored for reproductive success up to weaning. At weaning, pre-rut at approximately 100 days after calving, udders were palpated or observed by the farmer and hinds were categorised as lactating (wet) indicating survival of calf, or not lactating (dry). Farm management practices during calving and early lactation were recorded. Analysis of risk factors associated with progeny survival was done using path analysis (separately for adult and yearling hinds). Adult hinds >3 years old at calving, conceiving before 1 May and having a body-condition score >2 in September had 2.8, 2.4 and 2.9 times significantly higher odds of rearing a calf to weaning than other hinds, respectively. Adult hinds had about 5 times lower odds of rearing a calf to weaning when they were mixed with mature stags during calving. When farmers visited calving paddocks and checked for calving problems, adult hinds had 1.7 times higher odds of rearing a calf to weaning. When the farmer entered calving paddocks at least every second time they observed the hinds, yearling hinds had a twice higher odds of rearing a calf up to weaning. Sunny weather and high maximum temperatures were positively and negatively associated, respectively, with the probability of an adult hind being in lactation at weaning.  相似文献   

7.
A 2-year longitudinal observational study of 15 red deer farms was carried out in New Zealand from March 1992. Both years combined, 3364 adult and 653 yearling hinds were diagnosed pregnant in June by ultrasound scanning and monitored for reproductive success up to weaning. At weaning, pre-rut at approximately 100 days after calving, udders were palpated or observed by the farmer and hinds were categorised as lactating (wet) indicating survival of calf, or not lactating (dry). Farm management practices during calving and early lactation were recorded. Analysis of risk factors associated with progeny survival was done using path analysis (separately for adult and yearling hinds). Adult hinds >3 years old at calving, conceiving before 1 May and having a body-condition score >2 in September had 2.8, 2.4 and 2.9 times significantly higher odds of rearing a calf to weaning than other hinds, respectively. Adult hinds had about 5 times lower odds of rearing a calf to weaning when they were mixed with mature stags during calving. When farmers visited calving paddocks and checked for calving problems, adult hinds had 1.7 times higher odds of rearing a calf to weaning. When the farmer entered calving paddocks at least every second time they observed the hinds, yearling hinds had a twice higher odds of rearing a calf up to weaning. Sunny weather and high maximum temperatures were positively and negatively associated, respectively, with the probability of an adult hind being in lactation at weaning.  相似文献   

8.
An experiment was designed to assess the mineral status of 60 Angus yearling beef steers grazing bahiagrass pastures fertilized with large amounts of biosolids from three sources: Baltimore, MD; Tampa, FL; and Largo, FL. Biosolids were classified as exceptional quality and thus had no regulatory restrictions on loading rate. They differed primarily in concentration of Mo (12 to 56 mg/kg of DM). Residual treatments (biosolids applied only the previous year) for Baltimore biosolids were applied at 22.4 and 44.8 t/ha, and Tampa biosolids were either 16.8 or 33.6 t/ ha. The reapplied treatments (applied in consecutive years) for both Baltimore and Tampa sludges were applied at 22.4, 44.8, 16.8 , and 33.6 t/ha, respectively. The two Largo biosolids treatments were either 56 or 112 t/ha and were applied only in the 2nd yr. Liver biopsies and blood samples were collected on d 1, 95, and 180. Liver and plasma were analyzed for minerals and blood was analyzed for hemoglobin, hematocrit, and superoxide dismutase of polymorphonuclear neutrophils. Experimental animals were generally adequate in macromineral status and Co, Fe, and Mn throughout the experiment. Copper deficiency was evident based on the clinical signs of hair coat discoloration, very low plasma Cu at d 95, and the continuous decline in liver Cu over 180 d. A sharp decline in plasma Cu was observed for all treatments from d 1 to 95, after which Cu concentrations rebounded to normal concentrations (> 0.65 microg/mL) by d 180. Liver Mo was well below concentrations indicating toxicity (> 5.0 mg/kg). The steep decline in liver Cu over the first 95 d reflects the dietary Cu deficiency and the possibility of high forage S (0.26 to 0.52%) interfering with Cu metabolism. Biosolids application to bahiagrass pastures was not detrimental to mineral status except for declining Cu stores; however, the controls likewise declined, but to a lesser degree.  相似文献   

9.
Angus x Hereford heifers (n = 50) were randomly assigned to bahiagrass pastures treated with biosolids varying in mineral content and evaluated for mineral status, with special attention to Cu. Biosolids and NH4NO3 were all applied at the rate of either 179 kg N/ha (X) or twice this (2X). Fertilizer was applied to .81-ha pastures for the following treatments: 1) Baltimore biosolids (1X = 179 kg N/ha); 2) Baltimore biosolids (2X = 358 kg N/ha); 3) Tampa biosolids (1X = 179 kg N/ha); 4) Tampa biosolids (2X = 358 kg N/ha); or 5) control NH4NO3 (1X = 179 kg N/ha) applied at two times. Pastures were divided into five blocks with each treatment represented once in each block. Copper loads varied from 8.8 to 42.2 kg/ha, and Mo loads varied from .27 to 1.11 kg/ha. Heifers (two per pasture) grazed their assigned pastures exclusively for 176 d. Liver biopsies were taken from all animals at d 1, 99, and 176, and blood samples on d 1, 50, 99, 135, and 176. Liver and plasma were analyzed for selected mineral contents, and blood was analyzed for hemoglobin and hematocrit. Experimental animals were generally low in mineral status when assigned to pastures and deficient in Se and P. By d 50, plasma Ca, Mg, Se, P, and Zn were adequate for all treatments. Plasma Cu declined (P < .03) for all treatments from d 50 to 176. Plasma Cu reflected depleted liver Cu storage, with the two Tampa and highest Baltimore treatment means lower in plasma Cu than the control at 176 d. Liver Fe concentrations were adequate for all treatments, and Mo concentrations (< 2.18 mg/kg) did not approach levels indicative of toxicity. Liver Cu declined (P < .05) with time for all treatments. By d 99, animals receiving the two Baltimore treatments and the lowest Tampa application rate had lower (P < .05) liver Cu than the control, and all treatments were lower at 176 d. The decline of animal Cu status (liver and plasma) reflects the low Cu status of bahiagrass and the possibility of high forage S (.30 to .47%) interfering with Cu metabolism. Forage Mo was low but was slightly higher in biosolids-treated pastures. High levels of biosolids applications to bahiagrass pastures were not detrimental to mineral status except Cu, which had a tendency to decline in plasma and for all biosolids treatments declined in liver.  相似文献   

10.
以1999年建植的5个不同禾草组合混作草地为对象,研究连续两年不同施氮量75 kg/hm2(N1),150 kg/hm2(N2),225 kg/hm2(N3)和0 kg/hm2(CK)对草地生产力的提升及群落特征的综合影响。结果表明,连续2年施氮均可不同程度提升高寒地区人工禾草草地的生产力和草层高度,但一定程度降低了草地群落的物种多样性和丰富度。N2梯度可在有效提高草地生产力的同时,更好维持建植禾草的优势地位和物种的多样性水平,是该地区15龄人工草地改良的最佳施氮量。不同的禾草混作组合样地及不同施氮年份对施氮的响应存在一定差异,垂穗披碱草比重较大的样地对氮肥的响应较其他禾草更为敏感。研究也证明,过量施氮或单纯连续施氮对高寒地区多年生禾草混作草地群落的稳定性会造成一定影响。  相似文献   

11.
A diagnosis of secondary copper deficiency was established on a deer farm with a peat soil type, on the basis of confirmed enzootic ataxia in hinds, liver and serum copper concentrations and pasture and soil element analyses. Seventy-four weaner stags were selected for a trial to investigate a growth response to copper supplementation. Thirty-seven red and red x wapiti type stags were treated with 4g copper oxide wire particles at four months of age (April). A further 8g copper oxide wire was given in June. Thirty-seven untreated animals acted as controls. Bodyweights were measured on five occasions, from April 24 to November 26. Serum copper analyses were undertaken on ten deer prior to commencement of the trial, and on seven treated and eight control deer in June, July and October. Serum copper concentrations ranged from 2.0 to 19.3 micromol/l prior to the trial. In June, July and October serum copper ranged from 0.1-6.7, 0.6-5.0, and 1.3-6.3 micromol/l respectively, in control deer. In treated deer concentrations ranged from 7.2-14.7, 5.2-10.8, and 6.9-13.7 micromol/l in June, July and October respectively. The difference between mean copper concentration at each post-treatment sampling date was highly significant, (P<0.001). At the conclusion of the trial (November 26) the treated deer averaged 3.1kg heavier than controls, but this difference was not statistically significant. In view of these results and the variation in growth response trials in other species, further investigation of the effects of copper on the growth of young deer is warranted.  相似文献   

12.
13.
Multiparous red deer (Cervus elaphus scoticus) hinds (n=17) were either mated to a red deer stag or artificially inseminated with semen from a wapiti bull (C.e. nelsoni) to produce red deer or F1 crossbred (C.e. scoticus × C.e. nelsoni) calves to test the hypotheses that (1) red deer hinds rearing crossbred calves will produce significantly more milk to support calf growth than hinds rearing red deer calves, and (2) hind live weight and body condition may suffer as a result. Hinds and calves were grazed on ryegrass and white clover pastures and supplemented with pasture silage and barley grain when pasture supply was inadequate. Calves were left with their mothers until 9–10 months of age when lactation had terminated naturally. Mean body condition score (BCS) loss was greater in hinds rearing F1 calves than in hinds rearing red calves in the period from late gestation to mid-lactation (September–March, P<0.05). F1 calves grew significantly faster than red deer calves and were heavier at all ages. From February onwards there was a consistent decline in milk intake, and by the latest measurement (22 July) milk production was negligible, and most hinds had ceased lactating. Milk intake by the F1 calves was significantly greater until day 114, after which the measured milk intake was not significantly different. Pasture intake of the F1 calves was significantly greater at day 114 but not at other times (P<0.05). The average hind pasture intake was also not significantly affected by calf genotype when adjusted for post calving hind live weight. The results support the hypothesis that a red deer hind rearing an F1 calf produces significantly more milk than a hind rearing a red deer calf, suggesting that the growth of a red deer calf is limited by its milk demand rather than milk supply by the hind. The study also supported the second hypothesis. Hinds rearing F1 calves exhibited greater losses of body condition score relative to the hinds rearing red deer calves, indicating that the hinds rearing F1 calves were in a greater negative energy balance that hinds rearing red deer calves. This highlights the additional energetic demands on a hind from feeding an F1 calf and in a farmed context the need to ensure that adequate nutrition is provided.  相似文献   

14.
Sixty Angus (n = 29) and Angus-Sim-mental cross (n = 31) steers, averaging 9 mo of age and 277 kg of initial BW, were used in a 148-d study to determine the bioavailability of copper glycinate (CuGly) relative to feed-grade copper sulfate (CuSO(4)) when supplemented to diets high in S and Mo. Steers were blocked by weight within breed and randomly assigned to 1 of 5 treatments: 1) control (no supplemental Cu), 2) 5 mg of Cu/kg of DM from CuSO(4), 3) 10 mg of Cu/kg of DM from CuSO(4), 4) 5 mg of Cu/kg of DM from CuGly, and 5) 10 mg of Cu/kg of DM from CuGly. Steers were individually fed a corn silage-based diet (analyzed 8.2 mg of Cu/kg of DM), and supplemented with 2 mg of Mo/kg of diet DM and 0.15% S for 120 d (phase 1). Steers were then supplemented with 6 mg of Mo/kg of diet DM and 0.15% S for an additional 28 d (phase 2). Average daily gain and G:F were improved by Cu supplementation regardless of source (P = 0.01). Final ceruloplasmin, plasma Cu, and liver Cu values were greater (P < 0.05) in steers fed supplemental Cu compared with controls. Plasma Cu, liver Cu, and ceruloplasmin values were greater (P < 0.05) in steers supplemented with 10 mg of Cu/kg of DM vs. those supplemented with 5 mg of Cu/kg of DM. Based on multiple linear regression of final plasma Cu, liver Cu, and ceruloplasmin values on dietary Cu intake in phase 1 (2 mg of Mo/kg of DM), bioavailability of Cu from CuGly relative to CuSO(4) (100%) was 140 (P = 0.10), 131 (P = 0.12), and 140% (P = 0.01), respectively. Relative bio-availability of Cu from CuGly was greater than from CuSO(4) (P = 0.01; 144, 150, and 157%, based on plasma Cu, liver Cu, and ceruloplasmin, respectively) after supplementation of 6 mg of Mo/kg of DM for 28 d. Results of this study suggest that Cu from CuGly may be more available than CuSO(4) when supplemented to diets high in S and Mo.  相似文献   

15.
The Cu status of mature, crossbred ewes fed two sources (CuSO4 vs. Cu proteinate) and three levels (10, 20, or 30 mg/kg) of dietary Cu was determined in a 73-d feeding trial. Ewes (n = 30) were fed a basal diet containing rice meal feed, cottonseed hulls, cottonseed meal, meat and bone meal, cracked corn, and vitamin-mineral supplements at 2.5% of BW to meet NRC requirements for protein, energy, macrominerals, and microminerals, excluding Cu. The basal diet contained 5 mg/kg Cu, 113 mg/kg Fe, .1 mg/kg Mo, and .17% S. Copper sulfate or Cu proteinate was added to the basal diet to supply 10, 20, or 30 mg/kg of dietary copper in a 2x3 factorial arrangement of treatments. Ewes were housed in 3.7- x 9.1-m pens in an open-sided barn. Blood samples were collected on d 28 and 73. Ewes were slaughtered on d 74, and liver and other tissues were collected to determine Cu concentrations. An interaction (P = .08) occurred between source and level for liver Cu. The interaction existed due to an increase in liver Cu concentrations when ewes were fed increasing dietary Cu from CuSO4 but not when fed Cu proteinate diets. There was no source x level interaction (P>.10) for the blood constituents measured. On d 73, plasma ceruloplasmin activity was greater (P<.05) in ewes fed Cu proteinate than in those fed CuSO4 (33.1 vs. 26.8 microM x min(-1) x L(-1)). Increasing the concentration of dietary Cu did not affect (P>.10) plasma ceruloplasmin. Packed cell volume (PCV), red blood cell count (RBC), white blood cell count, whole blood hemoglobin (wHb), plasma hemoglobin, and plasma Cu were similar between sources of Cu. Ewes fed 20 mg/kg Cu had lower (P<.05) PCV, RBC, and wHb than those fed 10 or 30 mg/kg Cu diets. Feeding up to 30 mg/kg Cu from these sources did not cause an observable Cu toxicity during the 73-d period.  相似文献   

16.
Performance and Cu status were measured in growing and finishing steers supplemented with different copper (Cu) concentrations and sources. Sixty Angus (n = 36) and Angus x Hereford (n = 24) steers were stratified by weight and initial liver Cu concentration within a breed and randomly assigned to treatments. Treatments consisted of 1) control (no supplemental Cu); 2) 20 mg Cu/kg DM from Cu sulfate (CuSO4); 3) 40 mg Cu/kg DM from CuSO4; 4) 20 mg Cu/ kg DM from Cu citrate (C6H4Cu2O7); 5) 20 mg Cu/kg DM from Cu proteinate; and 6) 20 mg Cu/kg DM from tribasic Cu chloride (Cu2(OH)3Cl). A corn silage-soybean meal-based diet that was analyzed to contain 10.2 mg of Cu/kg DM was fed for 56 d. Steers were then switched to a high-concentrate diet that was analyzed to contain 4.9 mg of Cu/kg DM. Equal numbers of steers per treatment were slaughtered after receiving the finishing diets for either 101 or 121 d. Performance was not affected by Cu level or source during the growing phase. Gain, feed intake, and feed efficiency were reduced (P < .05) by Cu supplementation during the finishing phase. Plasma and liver Cu concentrations were higher in steers receiving supplemental Cu at the end of both the growing and finishing phases. Steers supplemented with 40 mg Cu/kg DM from CuSO4 had higher (P < .05) liver Cu concentrations than those supplemented with 20 mg Cu/kg DM from CuSO4. Liver Cu concentrations did not increase over the finishing phase relative to liver Cu concentrations at the end of the growing phase. These results indicate that as little as 20 mg/kg of supplemental Cu can reduce performance in finishing steers.  相似文献   

17.
AIM: To measure the nutritive value of pasture in terms of digestible energy intake (DEI) and dry matter (DM) digestibility, and to determine the effect of Ca, P, Cu, Zn, and Se supplementation on growth rate and degree of physeal swelling in Thoroughbred yearlings grazed on pasture. METHODS: Fourteen yearling horses were randomly allocated to 1 of 2 groups and rotationally grazed on a ryegrass/white clover pasture for 7 months. One group was supplemented daily with a mineral mix. Liveweight changes were recorded at fortnightly intervals and pasture mineral composition determined at monthly intervals. The DM intake (DMI) was determined from daily faecal DM outputs divided by the indigestible DM fraction (1 - digestible DM) determined from a digestibility study. The DEI was determined from the difference between the gross energy intake and the gross energy faecal output. The DM, gross energy content, crude protein (CP), soluble carbohydrate, acid detergent fibre (ADF), neutral detergent fibre (NDF), lipid and mineral composition of pasture offered and faeces were analysed and their digestibility or apparent absorption calculated. RESULTS: The DM digestibility of pasture averaged 0.64 while the daily DMI and DEI of a 350 kg yearling, gaining 0.6 kg liveweight/day, averaged 6.9 kg DM/day and 78 MJ DE/day, respectively. The mineral supplement had no significant effect on the growth of yearlings grazing pasture that had a mineral composition of (g/kg DM) Na 0.17, K 32.8, Ca 3.6, P 3.4, Mg 2.1, S 3.0, and (mg/kg DM) Cu 7.9, Fe 177, Mn 83, Zn 28 and Se 0.016. Plasma Se was elevated (e.g. 40-218 microg/l) by Se supplementation while Cu supplementation had no effect on plasma and liver Cu concentrations. Physeal swelling was observed in all horses, regardless of treatment. CONCLUSION: Good quality ryegrass/white clover pasture that had a DE content of 11.3 MJ/kg DM and adequate mineral composition (as observed in this study, with the possible exception of Se) will provide an adequate intake of nutrients to ensure good growth in yearling horses.  相似文献   

18.
Copper (Cu) deficiency was diagnosed in a Norwegian red deer (Cervus elaphus) herd subsequent to deaths due to emaciation in late autumn 1999. The animals had free access to salt licks containing 3000 mg Cu/kg. An evaluation of the herd revealed poor calf growth rate, low weights of adult hinds, dull and light-coloured hair coats and cases of diarrhoea. The herd was subsequently monitored throughout a three-year period of Cu-supplementation. The monitoring regimen included clinical observation, copper serum examination, weighing, faecal parasitological examination, and reproduction control by ultrasound. During the period January 2000 to May 2001, the animals were treated with Cu oxid capsules (1 g CuO/10 kg liveweight) at 2–4 months intervals, with the exception of March to September 2000. The animals were fed continuously with Cu-enriched concentrates containing 300 mg Cu/kg, at a rate of 1/2 kg per head and day, from May 2001 to January 2003. Following both copper supplementation regimens adequate serum Cu concentrations were measured, and markedly improved body weights, coat quality and reproductive results were observed, except for the period from March to September 2000 when no treatment was given. The results showed that in a deer herd, with a diet low in Cu, supplementation with CuO capsules had to be given at intervals of a few months to maintain adequate serum Cu levels. Free access to Cu-containing salt licks did not meet the animals'' Cu demand. Good and stable results were achieved by the daily feeding of Cu-enriched concentrates.  相似文献   

19.
Three experiments were conducted to evaluate the effects of increasing dietary Cu and Zn on weanling pig performance. Diets were fed in 2 phases: phase 1 from d 0 to 14 postweaning and phase 2 from d 14 to 28 in Exp. 1 and 2 and d 14 to 42 in Exp. 3. The trace mineral premix, included in all diets, provided 165 mg/kg of Zn from ZnSO(4) and 16.5 mg/kg of Cu from CuSO(4). In Exp. 1, treatments were arranged in a 2 × 3 factorial with main effects of added Cu from tri-basic copper chloride (TBCC; 0 or 150 mg/kg) and added Zn from ZnO (0, 1,500, or 3,000 mg/kg from d 0 to 14 and 0, 1,000, or 2,000 mg/kg from d 14 to 28). No Cu × Zn interactions were observed (P > 0.10). Adding TBCC or Zn increased (P < 0.05) ADG and ADFI during each phase. In Exp. 2, treatments were arranged in a 2 × 3 factorial with main effects of added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 28) and Cu (control, 125 mg/kg of Cu from TBCC, or 125 mg/kg of Cu from CuSO(4)). No Cu × Zn interactions (P > 0.10) were observed for any performance data. Adding ZnO improved (P < 0.02) ADG and ADFI from d 0 to 14 and overall. From d 0 to 28, supplementing CuSO(4) increased (P < 0.02) ADG, ADFI, and G:F, and TBCC improved (P = 0.006) ADG. In Exp. 3, the 6 dietary treatments were arranged in a 2 × 2 factorial with main effects of added Cu from CuSO(4) (0 or 125 mg/kg) and added Zn from ZnO (0 or 3,000 mg/kg from d 0 to 14 and 0 or 2,000 mg/kg from d 14 to 42). The final 2 treatments were feeding added ZnO alone or in combination with CuSO(4) from d 0 to 14 and adding CuSO(4) from d 14 to 42. Adding ZnO increased (P < 0.04) ADG, ADFI, and G:F from d 0 to 14 and ADG from d 0 to 42. Dietary CuSO(4) increased (P < 0.004) ADG and ADFI from d 14 to 42 and d 0 to 42. From d 28 to 42, a trend for a Cu × Zn interaction was observed (P = 0.06) for ADG. This interaction was reflective of the numeric decrease in ADG for pigs when Cu and Zn were used in combination compared with each used alone. Also, numerical advantages were observed when supplementing Zn from d 0 to 14 and Cu from d 14 to 42 compared with all other Cu and Zn regimens. These 3 experiments show the advantages of including both Cu and Zn in the diet for 28 d postweaning; however, as evident in Exp. 3, when 3,000 mg/kg of Zn was added early and 125 mg/kg of Cu was added late, performance was similar or numerically greater than when both were used for 42 d.  相似文献   

20.
A longitudinal observational study of 15 red deer farms was carried out in New Zealand for two years from March 1992. The deer were monitored for performance and health problems, and farm management practices were recorded. Numbers at risk were 4,683 hind-years, 2,459 stag-years and 3,202 weaner-years. The numbers of primiparous and adult hinds at risk of losing their progeny by weaning were 653 and 3,364, respectively. Where possible, postmortem examinations were carried out, and organs were sampled for histological and microbiological investigation. Rates of mortality varied with season with most stag and hind deaths in winter and weaner deaths in autumn and winter. Overall mortality rates were 1.77, 2.60 and 5.87 per 100 deer-years for hinds, stags and weaners, respectively. Malignant catarrhal fever accounted for 0.53 stag and 0.17 hind deaths per 100 deer-years at risk Misadventure, including broken bones, accounted for 15.4 per cent of weaner mortalities, or 0.53 weaner mortalities per 100 weaner-three months in autumn. Yersiniosis was confirmed in 18.6 per cent of weaner deaths, or 1.09 weaners per 100 weaner-years during the first six months after weaning, but was also suspected but unconfirmed in a further 41 per cent of weaner mortalities. Overall, 17 per cent of yearling hinds, and 9.2 per cent of adult hinds lost their progeny between pregnancy diagnosis in June and weaning in March. One outbreak of osteochondrosis was recorded. Mortality rates varied between farms and many mortalities were preventable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号