首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
制备可同时检测引起集约化养猪业常见4种传染病,病毒(猪流感病毒、口蹄疫病毒、猪伪狂犬病毒、猪蓝耳)的寡核苷酸芯片。根据4种猪疫病病毒特异性基因的保守区域设计合成了60mer寡核苷酸探针,制备寡核苷酸芯片。采用不对称PCR和间接荧光标记技术进行单链DNA扩增和荧光标记,标记样品与寡核苷酸芯片杂交后,进行芯片清洗、扫描及结果分析。杂交结果显示,4种病毒的寡核苷酸检测探针均特异地与相应的标记样品杂交,芯片上呈现较强的阳性杂交信号,而除阳性质控探针外,阴性对照和空白对照均检测不到荧光信号。证明寡核苷酸芯片适用于快速、准确、高通量地诊断影响集约化养猪业的多种猪疫痛病毒。  相似文献   

2.
猪繁殖与呼吸综合征病毒(PRRSV)、猪瘟病毒(CSFV)和猪圆环病毒Ⅱ型(PCV-2)是引发猪繁殖障碍的主要病原,建立其基因芯片快速检测体系,对开发猪繁殖障碍快速检测试剂盒具有重要意义。根据GenBank中已发表的PRRSV、CSFV和PCV-2的病毒基因组序列,设计合成特异性引物和特异性较强的60mer的寡核苷酸探针,并将探针按所设计阵列固定于表面经氨基化修饰的玻片上,制备出寡核苷酸芯片。通过引物标记及特异性验证,建立了带标记引物的多重PCR检测体系,从而产生大量可与寡核苷酸探针特异性互补的带标记的DNA片段。将标有荧光染料的扩增产物与芯片上寡核苷酸探针杂交,扫描、分析芯片上荧光信号。结果表明,芯片上各样本对应探针位点呈现阳性荧光信号,而阴性对照和空白对照则基本不能检测到荧光信号。分别用基因芯片检测方法和PCR/RT-PCR检测60份临床病料,两者符合率高达92%,表明该检测技术能够用于临床病料的检测及快速诊断PRRSV、CSFV和PCV-2。  相似文献   

3.
本研究以猪细小病毒VP2基因为目的基因设计引物和探针,通过不对称PCR扩增Cy3标记的DNA片段与固定于芯片上的探针进行杂交,对杂交芯片进行扫描分析,根据荧光信号的强度来确定是否存在猪细小病毒。结果表明,采用浓度为5μmol/L的探针与PCR产物于47℃杂交1 h即可得到清晰的荧光信号,检测灵敏度可达34.5 ng/μL,同时用制备的基因芯片对临床20份疑似猪细小病毒病感染的病料进行检测,检测结果与PCR检测结果符合率达100%,表明基因芯片检侧技术是一种灵敏度高、特异好的检侧方法。该方法的建立可以快速有效地对猪细小病毒做出诊断,具有较好的应用前景。  相似文献   

4.
根据猪瘟病毒(CSFV)E2基因序列,设计41条针对CSFV 3个基因群共10个亚群各亚群寡核苷酸探针。利用欧盟猪瘟诊断手册推荐的CSFV E2基因套式RT-PCR方法,在内套PCR过程中进行Cy3-dCTP掺入荧光标记,制备芯片杂交样品。用标记的PCR产物与寡核苷酸探针阵列杂交,置于GenePix 4100A扫描仪中扫描,利用Ge-nePix Pro 6.0软件分析杂交图像。特异性和灵敏度试验显示,芯片方法与本室发表的CSFV real-time RT-PCR方法的灵敏度相近,芯片探针与猪繁殖与呼吸综合征病毒(PRRSV)、猪2型圆环病毒(PCV2)、猪伪狂犬病毒(PRV)样品无非特异性杂交。以包括1.1、2.1、2.2、2.3亚群的8份CSF阳性样品进行芯片的检测验证,结果表明,通过特异性的杂交图谱或杂交信号分析可准确判定样品所属的基因亚群,寡核苷酸芯片的检测结果与测序的分型结果全部符合。本研究为将寡核苷酸芯片技术用于猪瘟病毒的基因分型和分子流行病学研究奠定了基础。  相似文献   

5.
猪流感病毒基因芯片检测技术的研究   总被引:3,自引:0,他引:3  
根据猪流感病毒(SIV)的M基因序列设计了1对特异性引物M1/M2,扩增出大小为229 bp的目的片段.针对这个基因片段,再设计合成4条寡核苷酸探针,其中反向引物的5'端用荧光素Cy3标记.以荧光标记不对称PCR技术为基础,通过将单链PCR产物与芯片杂交实现对SIV的检测,建立SIV的基因芯片检测方法.利用该方法对39份猪组织样品进行检测,与RT-PCR检测方法相比,本方法具有良好的特异性和敏感性.试验结果表明,用该方法快速检测组织中SIV是可行的,对该病的快速诊断和分子流行病学调查具有重要意义.  相似文献   

6.
为了研制猪伪狂犬病病毒(pseudorabies virus,PRV)诊断DNA芯片,选取PRV g E基因设计引物与探针以构建DNA芯片,同时对基因芯片的探针质量浓度、Poly(d T)的添加、杂交温度、杂交时间进行筛选。结果显示:寡核苷酸探针的浓度在1~30μmol/L之间对杂交信号的影响不大;寡核苷酸探针的氨基化端加上Poly(d T),49.5℃杂交1 h可以获得较好的杂交信号;敏感性试验结果显示,敏感性可达1×10-6ng级,与普通PCR相比高10倍,该芯片具有特异性高、灵敏度高等优点;应用猪伪狂犬病毒检测基因芯片检测20份临床病料,与PCR结果符合率达100%。  相似文献   

7.
基因芯片方法检测6种动物源性人兽共患病病原   总被引:1,自引:0,他引:1  
为了建立可同时检测H5亚型禽流感病毒、狂犬病病毒、猪链球菌2型、炭疽芽孢杆菌、沙门氏菌、大肠杆菌O157的基因芯片检测方法,本实验根据GenBank中上述6种病原的基因序列,设计并合成了特异性的引物和探针.采用点样法制备杂交芯片,将上述病原扩增产物混合后与芯片杂交.杂交结果显示,针对本试验中6种人兽共患传染病所设计的寡核苷酸探针可特异性识别靶基因,与其他常见病原体之间没有交叉反应.检测的灵敏度在1.38×10-5pg/μL~151 pg/μL之间.将建立的基因芯片检测方法对临床样品进行检测,结果与荧光PCR方法一致.  相似文献   

8.
猪瘟病毒和猪细小病毒检测基因芯片的构建   总被引:3,自引:0,他引:3  
本试验克隆猪瘟病毒(Classical swine fever virus,CSFV)和猪细小病毒(Porcine parvovirus,PV)各自病毒基因保守序列,提取质粒中的模板、扩增纯化作为探针,应用微量点样技术将探针固定在硝酸纤维素膜上,制备诊断基因芯片;同时对制备的基因芯片进行有效性监控和特异性、重复性的质量控制;然后提取样品核酸,PCR扩增并用生物素标记,并将所获得的扩增产物与诊断基因芯片进行特异性的逆向点杂交,最后通过芯片扫描来实现对病原的高效检测和分析判断。试验结果表明病料中抽提的核酸与芯片杂交的信号为阳性且较明显,说明制备的猪瘟病毒和猪细小病毒检测基因芯片有效性监控正常且两种病原的特异性和重复性均良好。  相似文献   

9.
本研究通过设计、合成并修饰基因特异性引物和寡核苷酸探针并标记生物素,利用该探针与荧光编码微球偶联后,与抽提的对虾白斑综合征病毒(White spot syndrome virus,WWSV)的PCR产物进行杂交反应,用液相芯片检测仪(Luminex200)检测荧光信号建立了WWSV快速液相芯片检测方法。该方法具有较好的特异性,偶联特异性探针的微球只与相应的病毒基因的PCR产物反应,而不与其他虾病病毒基因反应,可以检测到107的稀释度。本研究初步建立的WSSV液相芯片检测方法为进一步建立几种虾病同时快速检测奠定了基础。  相似文献   

10.
根据大肠杆菌、沙门菌、无乳链球菌和鸡毒霉形体的gyrA基因序列,设计了通用引物和ll条寡核苷酸探针;利用点样仪将探针点在基片上,制成寡核苷酸芯片;采用PCR荧光标记靶基因,与芯片杂交,用荧光扫描仪检测信号;同时以PCR一测序法进行gyrA基因突变的检测。结果,PCR反应体系能特异性地扩增出靶基因;寡核苷酸芯片能同时检测不同病原菌GyrA第83、87位发生的突变,芯片检测结果与测序结果较为一致。结果表明,使用寡核苷酸芯片技术检测病原菌耐氟喹诺酮类基因突变是可行的;研究结果为基因芯片技术应用于兽医临床耐药性检测提供了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号