首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
建立了固相萃取-超高效液相色谱检测梨中噻虫胺残留量的分析方法,并对20%噻虫胺悬浮剂在梨中的残留及消解动态进行了研究。样品经乙腈匀浆提取,NH2柱净化,超高效液相色谱-二极管阵列检测器 (UPLC-PDA) 检测,外标法定量。结果表明:在0.05~2.5 mg/kg添加水平下,噻虫胺在梨中的平均回收率为95%~103%,相对标准偏差为2.0%~3.3%;噻虫胺在梨中的定量限为0.05 mg/kg。消解动态试验结果显示,噻虫胺在梨中的消解动态规律符合一级反应动力学方程,其半衰期为12.0~16.4 d。最终残留试验表明:按有效成分质量浓度0.06和0.09 g/L,施药2~3次,距最后一次施药21 d后采样,梨中噻虫胺的残留量为<0.05~0.13 mg/kg,低于国际食品法典委员会 (CAC) 制定的最大残留限量 (MRL) 值 (0.4 mg/kg)。  相似文献   

2.
啶酰菌胺在草莓和土壤中的残留及消解动态   总被引:1,自引:1,他引:0  
通过两年两地的田间试验,采用分散固相萃取-气相色谱-质谱联用的分析方法,研究了50%啶酰菌胺水分散粒剂在草莓和土壤中的残留及消解动态,并探讨了不同农作物品种、环境气候条件对农药消解速率的可能影响。结果表明:在草莓中添加0.05、0.3和3 mg/kg的啶酰菌胺标准品时,其平均回收率为91%~121%,相对标准偏差(RSD)为5.8%~9.9%;在土壤中分别添加0.1、0.3和3 mg/kg的啶酰菌胺时,其平均回收率为91%~100%,RSD为5.4%~6.5%。草莓和土壤中啶酰菌胺的定量限分别为0.05和0.1 mg/kg。啶酰菌胺在草莓中的消解动态符合准一级动力学方程,半衰期为6.2~11.8 d,但在山东和北京土壤中的消解试验均未拟合出指数方程。试验表明,50%啶酰菌胺水分散粒剂以有效成分337.5 g/hm2的推荐高剂量分别施药3次,采收安全间隔期为3 d时,啶酰菌胺在草莓和土壤中的最大残留量分别为1.97及0.38 mg/kg,最终残留量符合残留要求,可以安全使用。  相似文献   

3.
通过探究18%噻虫胺包埋颗粒剂在黄瓜Cucumis sativus L.叶片中的累积量与其对温室白粉虱Trialeurodes vaporariorum Westwood防治效果的相关性及残留消解动态,以期为指导其科学用药,降低环境风险提供理论依据。以1%噻虫胺颗粒剂为对照药剂,通过温室黄瓜栽培试验,调查了18%噻虫胺包埋颗粒剂对温室白粉虱的防治效果。通过建立黄瓜叶片和土壤中噻虫胺残留量的超高效液相色谱-串联质谱 (UPLC-MS/MS) 检测方法,测定了不同施药量和黄瓜不同生长时期条件下18%噻虫胺包埋颗粒剂在黄瓜叶片中的累积量,并研究了其累积量与防治效果的相关性。结果表明:18%噻虫胺包埋颗粒剂对温室白粉虱的防效为49%~95%,是对照药剂1%噻虫胺颗粒剂的1.16~2.32倍,且在推荐施药剂量 (有效成分450 g/hm2)下即能达到理想防效;其在土壤中的残留消解动态符合一级反应动力学方程,消解半衰期为43~63 d,而对照药剂为35 d,表明其在土壤中的消解速率缓慢;噻虫胺在黄瓜叶片中的累积量随施药量的增加而增加,累积量与防效均随施药时间的推移呈现先升高后降低的变化趋势,并在施药后56 d达到最高值,当施药剂量有效成分分别为450、600和750 g/hm2时,黄瓜上部叶片中噻虫胺的最大累积量分别为1.9、2.2和2.8 mg/kg,最高防效均为90%;中部叶片中噻虫胺的最大累积量分别为2.2、2.5和3.0 mg/kg,最高防效分别94%、93%和95%。  相似文献   

4.
噻虫嗪在保护地和露地菠菜中的消解规律及安全使用   总被引:1,自引:1,他引:0  
赵莉  沈桂明  马琳 《农药学学报》2014,16(4):457-461
利用液相色谱-串联质谱仪建立了菠菜中噻虫嗪残留量的检测方法,并根据农药残留登记田间试验方法研究了25%噻虫嗪水分散粒剂在保护地和露地菠菜中的残留规律。结果表明:噻虫嗪在2种栽培条件下的消解动态均符合一级动力学模型,但在保护地菠菜中的消解速率明显比露地的慢,半衰期分别为4.08和1.28 d;25%噻虫嗪水分散粒剂按推荐剂量(有效成分)30 g/hm2和1.5倍推荐剂量45 g/hm2,分别对水喷雾施药2~3次,施药间隔期为7 d,于距离末次施药3、5、7 d采样测定,噻虫嗪在保护地菠菜中的残留量明显高于露地的。我国暂未制定噻虫嗪在菠菜上的最大残留限量(MRL),参照其在甘蓝上的MRL值(0.2 mg/kg),噻虫嗪在保护地和露地栽培时的安全间隔期分别应为7和3 d以上。在菠菜种植中使用噻虫嗪时应根据不同栽培条件设定不同的安全采收间隔期,从而降低其风险。  相似文献   

5.
为研究噻虫嗪及其代谢物在茶树菇及其菌棒上的消解动态及最终残留量规律,以30%噻虫嗪悬浮剂为供药试剂开展田间试验,建立液相色谱-串联质谱残留检测分析方法,对茶树菇及其菌棒上噻虫嗪及其代谢物噻虫胺的消解动态规律和最终残留进行检测分析。结果表明:在0.01~0.5 mg/L和0.004~0.2 mg/L线性范围内,噻虫嗪及其代谢物噻虫胺的质量浓度与其峰面积间线性关系良好,R2均>0.999,在茶树菇和菌棒中的平均回收率为96%~103%,相对标准偏差为0.7%~4.2%。噻虫嗪在茶树菇上消解过程符合一级动力学模型,半衰期分别为1.77 d。用药后3~10 d,噻虫嗪在菌棒中的残留量主要集中在上段,噻虫胺在茶树菇和菌棒上的残留量均<定量限。30%噻虫嗪悬浮剂以有效成分0.009、 0.013 5 g a.i./m2的剂量施药2~3次,用药10 d后噻虫嗪在茶树菇中的残留量近似于欧盟规定噻虫嗪在真菌上的最大允许残留限量0.01 mg/kg。  相似文献   

6.
本文采用田间试验的方法,研究了15%三唑醇可湿性粉剂在小麦及土壤中的消解动态和最终残留量。试验结果表明,三唑醇在麦苗中消解较快,半衰期为3.82~4.94d,土壤中消解相对缓慢,其半衰期为17.17~20.91d;15%三唑醇可湿性粉剂按最高推荐剂量(商品)60g/mu和最高推荐剂量的2倍120g/mu施药2、3次,采收距末次施药间隔7、14、21d,三唑醇在小麦籽粒中残留量为0.029 1~0.153 0mg/kg,麦杆中残留量为0.029 1~0.153 0mg/kg,土壤中为0.005 9~0.046 0mg/kg。该药属于低毒农药,按推荐剂量使用是安全的。  相似文献   

7.
为明确噻虫嗪在节瓜上的残留行为,于2015年在广东和上海两地进行了噻虫嗪在节瓜上的规范田间残留试验,建立了节瓜中噻虫嗪及其代谢物噻虫胺残留量的高效液相色谱-串联质谱 (HPLC-MS/MS) 检测方法。样品用乙腈提取,经氨基固相萃取小柱净化,HPLC-MS/MS 检测,外标法定量。结果表明:噻虫嗪在节瓜上的消解半衰期为4.98~5.84 d;采用25%噻虫嗪水分散粒剂 (WG),分别按有效成分75和112.5 g/hm2 的剂量于幼果期开始施药,施药2~3次,每次施药间隔期为7~10 d,距最后一次施药后3、5、7 d 采样测定,节瓜中噻虫嗪和噻虫胺的残留量分别为0.010~0.422 mg/kg和 <0.010~0.020 mg/kg。膳食摄入风险初步评估结果显示:其风险商值 (RQ) 为0.044,表明噻虫嗪的长期膳食摄入风险较低。目前中国尚未制定噻虫嗪在节瓜上的最大允许残留限量 (MRL) 标准,根据试验结果,建议中国可将噻虫嗪在节瓜上的MRL值暂定为1 mg/kg。  相似文献   

8.
氯虫·噻虫嗪在芥蓝中的残留消解动态研究   总被引:4,自引:0,他引:4  
对氯虫·噻虫嗪SC(300 g/L)在芥蓝中的残留消解动态进行了研究。结果表明,按照推荐剂量的2倍剂量(60mL/667m2)施药,氯虫苯甲酰胺和噻虫嗪在芥蓝中的原始沉积量分别为3.648 0 mg/kg和8.347 7 mg/kg,残留消解方程分别为Ct=4.198e-0.273 t和Ct=7.589e-0.424 6 t,半衰期分别为2.5 d和1.6 d。施药后21 d氯虫·噻虫嗪残留量降解至0.01 mg/kg以下。  相似文献   

9.
建立了采用分散固相萃取法进行样品前处理,分别用液相色谱-质谱联用和气相色谱检测14%氯虫苯甲酰胺·高效氯氟氰菊酯微囊悬浮剂中2种有效成分在豇豆和土壤中的残留量及消解动态的方法。结果表明:豇豆和土壤中分别添加0.005~1 mg/kg 4个水平的氯虫苯甲酰胺和高效氯氟氰菊酯,其平均回收率为80%~105%,相对标准偏差为0.70%~9.5%。北京和海南2地氯虫苯甲酰胺和高效氯氟氰菊酯在豇豆中的半衰期为4~6 d,土壤中的为10~24 d。成熟时采收,豇豆中氯虫苯甲酰胺和高效氯氟氰菊酯的残留量均低于0.2 mg/kg。推荐14%氯虫苯甲酰胺·高效氯氟氰菊酯微囊悬浮剂在豇豆上的使用剂量为有效成分45 g/hm2,使用方式为喷雾,施药次数不超过3次,施药间隔期为7 d,安全间隔期为5 d。  相似文献   

10.
烯啶虫胺在水稻和稻田环境中的残留及消解动态   总被引:1,自引:0,他引:1  
采用高效液相色谱-紫外检测器(HPLC-UVD)测定了烯啶虫胺在稻田水、土壤、水稻植株和糙米样品中的消解动态及最终残留。田水样品用二氯甲烷萃取;土壤样品用水提取后经二氯甲烷萃取;水稻植株和糙米样品依次用水、丙酮提取,提取液经液液萃取及柱层析净化;HPLC-UVD检测。当烯啶虫胺在田水和土壤中的添加水平为0.1~5 mg/L和0.1~5 mg/kg,在植株和糙米中的添加水平为0.2~5 mg/kg时,其平均添加回收率在77.2% ~100.3%之间,相对标准偏差 (RSD)在1.9% ~12.9%之间。烯啶虫胺在稻田水、土壤、植株和糙米中方法的定量限(LOQ)分别为0.1 mg/L和0.1、0.2、0.2 mg/kg,检出限(LOD)分别为0.04 mg/L和0.04、0.08、0.08 mg/kg。温室模拟消解动态试验结果显示,以推荐使用高剂量的20倍(有效成分1 500 g/hm2) 施药,烯啶虫胺在稻田水、土壤以及水稻植株中的消解动态规律均符合一级动力学方程,其半衰期分别为0.58、3.31及2.70 d,消解速率较快。最终残留试验表明,于大田分蘖期按推荐使用高剂量的1.5倍(有效成分112.5 g/hm2)分别施药3次和4次,间隔期为7 d,距最后一次施药7 d后采样,糙米中烯啶虫胺的残留量均低于LOD值(0.08 mg/kg)及日本规定的最大残留限量(MRL)值(0.5 mg/kg)。  相似文献   

11.
丙炔氟草胺在大豆和土壤中的残留及消解动态   总被引:1,自引:0,他引:1  
通过在山东德州、黑龙江哈尔滨和辽宁海城2年3地的田间试验,采用QuEChERS-高效液相色谱-串联质谱 (QuEChERS-HPLC-MS/MS) 法,研究了丙炔氟草胺在大豆和土壤中的残留及消解动态。结果表明: 在0.000 3、0.01和0.1 mg/kg添加水平下,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的日内平均添加回收率为89%~112%,日内相对标准偏差(RSD) (n = 5) 为1.3%~5.3%;日间平均添加回收率为85%~110%,日间RSD (n = 15) 为0.40%~4.8%。丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的定量限 (LOQ) 均为0.000 3 mg/kg,能够满足农药残留限量标准的要求。丙炔氟草胺在大豆植株和土壤中的消解动态均符合一级反应动力学方程,在大豆植株和土壤中的消解半衰期分别为 5.8~11.8 d和 15.8~24.8 d。采用480 g/L丙炔氟草胺悬浮剂按推荐高剂量 (有效成分60 g/hm2) 及其1.5倍推存剂量 (有效成分90 g/hm2) 于播后苗前施药1次,收获期采样时,丙炔氟草胺在大豆植株、青大豆、大豆籽粒和土壤中的最终残留量均低于中国国家标准中规定的丙炔氟草胺在大豆上的最大残留限量 (0.02 mg/kg)。  相似文献   

12.
采用高效液相色谱-串联质谱(HPLC-MS/MS)建立了水稻中多杀霉素的残留分析方法。样品经乙腈提取,乙二氨基-N-丙基硅烷(PSA)和石墨化碳黑(GCB)净化,HPLC-MS/MS检测。结果表明:多杀霉素A在0.006 ~1.2 mg/L范围内线性关系良好,相关系数(R2)为0.990 5;多杀霉素D在0.001~0.2 mg/L范围内线性关系良好, R2 为0.994 9。多杀霉素A和D的检出限(LOD)在田水中均为0.001 mg/L,在稻田土壤、水稻植株、糙米、稻壳和稻杆中均为0.005 mg/kg;多杀霉素A和D的定量限(LOQ)在田水中均为0.005 mg/L,在稻田土及各水稻基质中分别为0.06和0.01 mg/kg。在添加水平为0.005~6.0 mg/kg范围内,稻田土壤、田水及水稻各基质中多杀霉素A和D的平均回收率为72.9%~107.9%,相对标准偏差( RSD )为1.7%~13.5%。采用该方法对多杀霉素在田间水稻中的消解动态和最终残留进行了测定。结果表明,多杀霉素在稻田土壤、田水和水稻植株样品中的消解均符合一级动力学方程,半衰期分别约为7.5、1.2和 4.8 d,属于易降解农药。  相似文献   

13.
建立了QuEChERS-高效液相色谱-串联质谱 (QuEChERS-HPLC-MS/MS) 测定丙炔氟草胺在食品 (苹果、葡萄、柑橘、甘蓝、小麦、大豆)、土壤和水中残留量的方法,并分析了其在土壤中的消解动态。样品经乙腈均质提取,采用C18、N-丙基乙二胺 (PSA)、石墨化碳黑 (GCB) 和无水硫酸镁混合净化剂分散萃取处理,以C18色谱柱分离,采用电喷雾正离子 (ESI+) 扫描,多反应监测模式 (MRM) 检测,基质匹配标准溶液外标法定量。结果表明:在0.01~5 mg/kg范围内,丙炔氟草胺在苹果、葡萄、柑橘、甘蓝、小麦、大豆、土壤及水8种基质中的峰面积与其质量浓度间呈良好的线性关系 (R2 > 0.997 6)。在0.01、0.1和1 mg/kg添加水平下,丙炔氟草胺在8种基质中的日内平均回收率为82%~104%,相对标准偏差 (RSD) (n = 5) 为1.1%~7.8%;日间平均回收率为77%~109%,RSD (n = 15) 为0.1%~9.2%。方法的定量限 (LOQ) 为0.000 3~0.003 2 mg/kg,均低于美国、中国、日本及欧盟等国家和地区的最大残留限量值 (MRLs)。本方法简便、稳定、灵敏,能够满足实际检测需求。同时,对大田土壤分析的结果表明,丙炔氟草胺在土壤中的半衰期为23.9 d,属易降解农药。  相似文献   

14.
采用QuEChERS及固相萃取样品前处理方法,结合液相色谱-三重四极杆串联质谱技术(LC-MS/MS),以负离子扫描和多反应监测模式(MRM),建立了菠菜、土壤及水体中螺虫乙酯及4种代谢物(B-enol、B-keto、B-mono和B-glu)残留的检测方法。通过对质谱检测条件的优化表明,以乙腈-0.5%甲酸水溶液作为流动相,采用梯度洗脱时,色谱分离度及灵敏度最好。通过对样品前处理条件的考察,发现选用0.1%甲酸-乙腈溶液作为提取溶剂,经50 mg的m(PSA):m(GCB)=1:1净化处理后,在0.05、0.5和1 mg/kg添加水平下,螺虫乙酯及4种代谢物在菠菜中的回收率为81%~103%,相对标准偏差(RSD)为1.7%~7.9%;在土壤样品中的回收率为82%~98%,RSD为1.9%~7.6%。采用NH2柱作为固相萃取柱,用10 mL二氯甲烷洗脱,在0.005、0.05和0.5 mg/L添加水平下,螺虫乙酯及4种代谢物在水体中的回收率为82%~95%,RSD为1.5%~6.2%。在0.002~1 mg/L范围内,螺虫乙酯及4种代谢物的质量浓度与对应的峰面积间呈现良好的线性关系,r在0.996 7~0.999 7之间。检出限(S/N=3)分别为螺虫乙酯(0.000 2~0.000 3 mg/kg),B-enol(0.000 1~0.000 3 mg/kg),B-keto(0.000 4~0.000 6 mg/kg),B-mono(0.000 4~0.000 7 mg/kg),B-glu(0.000 2~0.000 6 mg/kg);定量限(S/N=10)分别为螺虫乙酯(0.000 6~0.001 mg/kg),B-enol(0.000 3~0.001 mg/kg),B-keto(0.001 2~0.001 6 mg/kg),B-mono(0.001 2~0.001 9 mg/kg),B-glu(0.000 6~0.001 3 mg/kg)。方法分析结果符合农药残留检测要求,适用于菠菜、土壤及水体中螺虫乙酯及4种代谢物残留的同时检测。  相似文献   

15.
壬菌铜和吡唑醚菌酯在苹果和土壤中的残留及消解动态   总被引:2,自引:2,他引:0  
建立了同时测定苹果及其土壤中壬菌铜和吡唑醚菌酯残留的分散固相萃取-高效液相色谱-串联质谱(DSPE-HPLC-MS/MS)方法,并采用该方法研究了24%吡唑醚菌酯·壬菌铜微乳剂在苹果和土壤中的残留及消解动态。其中壬菌铜以硫化钠为破络剂,将其转化为壬基酚磺酸后进行检测。样品用乙腈提取,同时加入硫化钠,经N-丙基乙二胺(PSA)净化后,采用C18色谱柱,以甲醇-水为流动相梯度洗脱分离,于多反应监测模式下经正负离子同时扫描进行定性,基质匹配标准曲线外标法定量。结果表明:在0.1~10 mg/kg添加水平下,壬菌铜在苹果及土壤中的回收率范围为92%~103%,相对标准偏差(RSD)为1.3%~5.1%;在0.01~1 mg/kg添加水平下,吡唑醚菌酯在苹果及土壤中的回收率范围为96%~105%,RSD为2.4%~4.6%。苹果及土壤中壬菌铜和吡唑醚菌酯的最低检测浓度(LOQ)分别为0.1和0.01 mg/kg。2014-2015年,中国宁夏、北京和山东两年三地的田间残留试验表明:壬菌铜在苹果和土壤中的消解半衰期分别为2.7~5.4和2.0~5.8 d,吡唑醚菌酯在苹果和土壤中的消解半衰期分别为4.3~8.3和3.6~10.2 d;采用24%吡唑醚菌酯·壬菌铜微乳剂,分别按推荐剂量(有效成分300 mg/kg)和推荐剂量的1.5倍(有效成分450 mg/kg)于苹果幼果期施药,最多施药4次,距末次施药14 d时,壬菌铜在苹果中的最大残留量为0.31 mg/kg,远低于日本规定的最大允许残留限量(MRL)值(5 mg/kg),吡唑醚菌酯在苹果中的最大残留量为0.27 mg/kg,低于中国规定的MRL值(0.5 mg/kg)。  相似文献   

16.
嘧草醚在水稻及其环境中的残留   总被引:1,自引:0,他引:1  
采用改良的QuEChERS-高效液相色谱-质谱 (HPLC-MS) 技术,建立了嘧草醚在水稻及其环境中残留量的检测方法。样品经V (乙腈) : V (甲酸) = 199 : 1的混合溶液提取,由十八烷基键合硅胶 (C18) 或C18 + 丙基乙二胺 (PSA) 吸附剂净化。以V (乙腈) : V (0.1%甲酸水溶液) = 70 : 30的混合溶液为流动相,经ZORBAX Eclipse XDB-C18色谱柱分离,采用电喷雾正离子 (ESI+) 模式扫描,HPLC-MS检测,外标法定量。结果表明:在0.01~1 mg/L范围内嘧草醚的峰面积与其质量浓度间线性关系良好,在乙腈、稻田水、土壤、稻株、糙米和稻壳中的相关系数均大于0.99。嘧草醚在稻田水中的检出限 (LOD) 为0.0015 mg/L,定量限 (LOQ) 为0.005 mg/L,在土壤、糙米、稻壳和稻株中的LOD分别为0.003、0.015、0.015 和0.003 mg/kg,LOQ分别为0.01、0.05、0.05 和0.01 mg/kg。在0.005、0.01和0.1 mg/L (或mg/kg) 添加水平下,嘧草醚在稻田水、土壤和糙米中的平均回收率分别为95~109%、92%~106%和89%~107%,相对标准偏差 (RSD) 分别为3.0%~5.0%、1.1%~2.9%和3.1%~3.7%;在稻壳和稻株中的平均回收率分别为95%~102%和93%~107%,RSD分别为1.1%~3.8%和3.5%~9.9%。该方法灵敏度、精密度和准确度均符合农药残留分析要求。  相似文献   

17.
为明确二嗪磷、毒死蜱和辛硫磷3种有机磷农药在双孢蘑菇栽培过程中的残留动态规律,采用在工厂化双孢蘑菇栽培基质 (覆土和培养料) 中拌料施药的方式,开展了田间试验,运用QuEChERS净化前处理技术结合UPLC-MS/MS分析,检测了3种农药在双孢蘑菇子实体和栽培基质中的残留动态。结果表明:建立的双孢蘑菇子实体、覆土和培养料3种基质中3种有机磷农药的液相色谱-串联质谱检测方法,经验证,在二嗪磷分别以0.000 3、0.003、0.1 mg/kg为添加水平,毒死蜱和辛硫磷分别以0.000 6、0.006、0.1 mg/kg为添加水平下,3种有机磷农药在双孢蘑菇、覆土和培养料3种基质中的平均回收率为76%~108%,相对标准偏差为2.2%~13%。检出限分别为:二嗪磷0.000 1 mg/kg、毒死蜱和辛硫磷均为0.000 2 mg/kg,定量限分别为:二嗪磷0.000 3 mg/kg、毒死蜱0.0006 mg/kg和辛硫磷0.000 6 mg/kg。在2 和10 mg/kg两个施药水平下,二嗪磷、毒死蜱和辛硫磷在双孢蘑菇栽培基质中的消解规律均符合一级反应动力学方程,在培养料中的消解半衰期分别为5.2、10.6、13.6 d和5.6、11.4、12.3 d;在覆土中的消解半衰期分别为25.9、41.7、27.2 d和41.7、48.1、36.8 d,且在培养料中的消解快于在覆土中的。在施药剂量不超过10 mg/kg的条件下,在双孢蘑菇子实体中毒死蜱残留量最高,为0.014 mg/kg,超过了欧盟规定的最大残留限量(MRL)标准,其余均低于现行日本、欧盟和美国规定的MRL值。  相似文献   

18.
陈国  朱勇  赵健  杨挺  张艳  吴银良 《农药学学报》2014,16(2):153-158
采用超高效液相色谱-串联质谱(UPLC-MS/MS)方法,研究了乙基多杀菌素中2种主要组分(XDE-175-J和XDE-175-L)在稻田水、土壤和水稻植株中的残留分析及消解动态。土壤和植株样品采用乙腈提取,乙二胺-N-丙基硅烷(PSA)净化;田水样品用0.1%甲酸溶液和乙腈稀释;UPLC-MS/MS分析。结果表明:XDE-175-J和XDE-175-L在田水、土壤和植株中的检出限(LOD)分别为2.5×10-4mg/L和5.0×10-4、0.001 mg/kg,定量限(LOQ)分别为0.001 mg/L和0.002、0.005 mg/kg。当添加水平为0.001~0.5 mg/kg(L)时,乙基多杀菌素在田水、土壤和水稻植株中的平均回收率为83%~102%,相对标准偏差(RSD)为1.9%~6.2%。消解动态试验结果表明:6%乙基多杀菌素悬浮剂(SC)按1.5倍推荐使用高剂量(有效成分40.5 g/hm2)于水稻拔节期施药1次,乙基多杀菌素在田水、土壤及水稻植株中的消解动态规律均符合一级动力学方程,半衰期分别为0.35、6.8和1.1 d;施药21 d后,其在水稻植株和田水中的消解率均在95%以上,在土壤中的消解率为86.1%;属易消解型农药。  相似文献   

19.
建立了硝磺草酮在甘蔗和土壤中的残留分析方法,并在广东和广西分别进行了10%硝磺草酮悬浮剂在甘蔗上残留的田间试验,研究了硝磺草酮在甘蔗和土壤中的消解动态和最终残留量。样品用乙腈提取,盐酸调节pH至3~4后二氯甲烷萃取,采用高效液相色谱配二极管阵列紫外检测器(HPLC-PDA)检测。结果表明:在0.01、0.1和1 mg/kg 3个添加水平下,硝磺草酮平均添加回收率为82%~84%,相对标准偏差(RSD)为1.9%~3.4%,检出限(LOD)为0.005 mg/kg,定量限(LOQ)为0.01 mg/kg。田间试验结果表明:施用10%硝磺草酮悬浮剂后,在甘蔗上的残留量呈现先降低后升高又下降的趋势;在土壤中的半衰期为12.3~14.7 d,属于易降解农药。最终残留量测定结果显示:收获期甘蔗中硝磺草酮的残留量均0.01 mg/kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号