首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Pejerrey is an important zooplanktivorous native fish of the Argentinean inland waters. It has been traditionally propagated for stocking purposes by relatively costly semi‐intensive and intensive methods. In this study, we evaluated the implementation of an extensive culture method by using floating cages in a shallow pampean lake. Four cages were installed in the Lacombe Lake and stocked with juveniles (16.24 ± 1.69 mm length) at 50 fish m?3 density for growing until the size of 150 mm, which is considered as a suitable size for stocking. Throughout the experiment, the temperature ranged between 10 and 26 °C and the zooplankton biomass ranged between 12 and 3269 μg dw L?1. The growth patterns in the length were similar in the four cages and directly related to the lake thermal conditions and zooplankton availability. The average final length after 315 days was 154.4 ± 8.8 mm. The survival rates ranged between 53.5% and 64.7% during the first 110 days and 11.1–25.7% at termination. Growth rate for the first 2 months was the highest documented for pejerrey culture. This simple technique offers the possibility to produce juvenile pejerrey at a low cost and provides the alternative of reinforcing the natural populations with fish already adapted to the natural environmental conditions.  相似文献   

2.
Effects of daily feeding frequency, water temperature, and stocking density on the growth of tiger puffer, Takifugu rubripes, fry were examined to develop effective techniques to produce tiger puffer in a closed recirculation system. Fish of 4, 14, and 180 g in initial body weight were fed commercial pellet diets once to five times a day to apparent satiation each by hand for 8 or 12 wk at 20 C. Daily feeding frequency did not affect the growth of 14‐ and 180‐g‐size fish. However, the daily feed consumption and weight gain of the 4‐g‐size fish fed three and five times daily were significantly higher than those of fish fed once daily (P < 0.05). Fish of 4 and 50 g in initial body weight were reared with the pellet diet at 15–30 C for 8 wk. The weight gain of fish increased with increasing water temperature up to 25 C and decreased drastically at 30 C for both sizes. Similar trends were observed for feed efficiency, although 4‐g fish had highest efficiency at 20 C. Effects of stocking density on growth were examined with fish of 8, 13, and 100 g in initial body weight. Fish were reared with the pellet diet for 8 or 16 wk at 20 C. Fish were placed in floating net cages in the culture tank, and the stocking density was determined based on the total weight of fish and volume of the net cage. Fish of 8 g in body weight grew up to 35–36 g during the 8‐wk rearing period independent of the stocking density of 8, 15, and 31 kg/m3 at the end of rearing. Final biomass per cage reached 32, 60, and 115 kg/m3 for 13‐g‐size fish, and 10, 18, and 35 kg/m3 for 100‐g‐size fish, and the growth of the fish tended to decrease with increasing stocking density for both sizes.  相似文献   

3.
Pacific abalone (Haliotis discus hannai Ino) aquaculture is a thriving industry in China. This study describes a novel submerged cage culture system for abalone rearing in Fujian, South China. The cage consisted of five vertical slots that were oriented perpendicular to the flow of water. The slots were separated by six vertically connected plastic plates for abalone attachment and shelter at the bottom of the cage. Experiment 1 was designed to determine the appropriate stocking density at the start of the abalone sea‐based production cycle. Eight‐month‐old hatchery reared and size‐graded juveniles were transferred to the sea‐based culture system. For different stocking densities, shell length of juveniles obtained in this novel culture system on 2, 3.5 and 5 months, respectively, was compared with shell lengths obtained in a traditionally multi‐tier basket culture system. In Experiment 2, daily growth rates (DGRs) in shell length and biomass in terms of wet weight of 2‐year‐old abalones reared in cage and tiered basket culture systems were compared over a 6‐month period. Results of Experiment 1 showed that growth of abalone in the cage culture system is density‐dependent; the mean final shell length of juveniles obtained was 6.7–15.9% higher than in tiered baskets system even at the same initial stocking density. In Experiment 2, DGRs in shell length of 53.83–78.38 μm day?1 obtained in cage system were significantly higher than that in tiered baskets (< 0.01). And in terms of wet weight biomass, it was 1.48–3.01 times higher in the cage system compared with the traditional system. Abalone survival was more than 87.5% in both culture systems in both experiments. Advantages of the newly established cage culture system included better growth performance of the animals reared and potential improvement of rearing conditions, such as improved water flow velocity and dissolved oxygen.  相似文献   

4.
Large‐scale commercial nurseries face problems in obtaining enough zooplankton of adequate species composition and size when fish larvae start to feed. To address these problems a simulation of the effects of timing of fish larvae stocking after pond filling on zooplankton composition was carried out. The experimental system consisted of twelve 130‐L containers, in which zooplankton populations were exclusively autochthonous (hatched from resting eggs in the sediments, not entering with the filling water). Treatments consisted of stocking 2‐d‐old common carp larvae on the fourth and sixth days after water filling and a control without fish. The effects of timing of stocking on fish larvae growth and on zooplankton composition were explored using factor analysis. This enabled the identification of several groups of zooplankters that respond in different ways to predation by fish larvae. FACTOR1 was a general measurement of small rotifer abundance. It showed earlier increase in response to the exposure to fish predation, and toward the end of the experiment indicated that fish also preyed on them. FACTOR2 identified the direct effects of size‐selective fish predation on zooplankton that differed according to timing of fish larvae stocking. FACTOR3 identified benthic rotifers, whose density in the plankton increased as a result of fish disturbance of the bottom sediment and decreased as a result of fish predation, also according to timing of fish larvae stocking. In the studied system no rotifers were present in the filling water and the zooplankton peak of autochthonous populations took a while to develop. Under this zooplankton succession pattern, stocking fish larvae before the rotifer concentration started to increase (Day 4) greatly affected their own food resources. The strong predation pressure exerted on the emergent resource retarded the zooplankton increase for 4 d. It also changed the composition toward smaller species and forced fish to feed on less preferred resources, which resulted in reduced fish growth rate. Stocking fish larvae after the rotifer concentration had started to increase (Day 6) allowed the fish to come across increasing amounts of zooplankton of large‐size species, not requiring the exploitation of small benthic rotifers. This resulted in better fish growth rates. Thus, increased larvae production in commercial nurseries can be achieved by matching fish stocking with the increasing phase of the zooplankton peak.  相似文献   

5.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

6.
Macrobrachium rosenbergii (de Man 1879) juveniles (0.4 g) were cultured in experimental cages (L × W × H: 2.5 × 1 × 1 m) in Laguna de Bay, the largest lake in the Philippines. The following stocking densities at four replicates each were used: 15, 30, 60 and 90 prawns m−2 of cage bottom. The mean sizes at harvest after 5 months of culture ranged from 14.3 g for the highest stocking density to 26.3 g for the lowest. The mean size at harvest, daily growth rate and size class distribution were significantly influenced by stocking density, with those at the lowest stocking density showing significantly better growth and overall proportion of larger prawns. Heterogeneous individual growth (HIG) was fairly evident in all treatments. The percentage of blue‐clawed males was not influenced by treatment but the mean weight was significantly higher in the lower stocking densities. Both the percentage and mean weight of berried females were significantly higher in the lowest stocking density. Survival was the highest in the lower stocking densities (55.3%, 54.0%, 52.7% and 36.9% for 15, 30, 60 and 90 prawns m−2 respectively). Feed conversion ratio (FCR) improved with decreasing stocking density, ranging from 2.1 to 3. As expected, yield per cropping increased with stocking density and ranged from 450 to 1089 g m−2 yr−1 of actual cage area. Production values obtained in the cage cultured M. rosenbergii were comparable to or even higher than those reported from pond culture, given that the stocking densities used in this study were generally higher than in ponds. The results show that the farming of M. rosenbergii in cages in lakes is a viable alternative to pond culture and has the potential of improve aquaculture production in lakeshore fish farming communities.  相似文献   

7.
The factors affecting production of estuary grouper, Epinephelus salmoides, in floating net cages are discussed. The concept of economic production in cage culture is outlined. Economic production of estuary grouper could be achieved by providing a suitable culture site with good water quality; ensuring proper farm management and regular maintenance of cages; preventing disease and ensuring efficient treatment; providing optimum stocking density, a balanced diet, optimal feeding frequency; manipulating fish behaviour by providing artificial hides; and manipulating physiological characteristics, e.g. by the use of growth promoters.The paper futher describes environmental parameters, such as dissolved oxygen content, water temperature, salinity, water current, bacteria count, pH, and bottom sediments, as important factors in site selection. Their effects on the growth and production of fish are discussed and their optimal levels determined. The problems involving management and maintenance of the farm are also outlined. The main problem in cage culture is fouling which demands considerable labour and money for cage maintenance. Other problems such as predators, poaching, and cannibalism are discussed at length. It is suggested that by manipulation of stocking density, production could be increased. The optimal stocking rate was found to be 60 fish/m3 which gives a high yield of marketable fish. Stocking could be further intensified by providing artificial hides using used car tyres. The net production could be increased by 230% if hiding space of 251 cm3 per fish was provided and the stocking density increased to 156 fish/m3. Although formulated feeds enhanced growth by 27.1% over that of groupers fed on trash fish, the production cost was much higher, rendering the use of formulated feeds alone uneconomical for commercial fish culture. Growth promoters such as 17α-methyltestosterone and nitrovin have been found to promote growth of young estuary grouper by 43.4 and 62.8%, respectively.Using various combinations of culture techniques, it was shown that net production could be increased from 23.76 kg/m3 using conventional culture methods to 136.75 kg/m3 with a combination of hiding space, heavy stocking, appropriate feeding frequency and formulated feeds incorporating growth promoters. The production time was also shortened considerably from 6 months to 2.7 months.Cost-benefit analysis of the eight culture techniques tested indicated that the production cost could be reduced from US$2.00/kg with conventional methods to as low as US$1.28/kg using a sophisticated method. However, based on current market proces, the conventional culture technique was still economically feasible, as the net income over total capital costs was 33.3%. Improvements of the conventional culture technique will increase the ratio of net income over total capital costs by 1–3 times.  相似文献   

8.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

9.
Abstract. A 91-day cage trial was conducted with juvenile seabass, Lates calcarifer (Bloch), and grouper, Epinephelus tauvina (Forskal), to ascertain the capacity of kerosene pressure lamps and fluorescent electric lamps as night-lights above the cages to attract pelagic food organisms into the cage and consequently sustain the survival and growth of the cultured fish. The experiment was conducted using 1×1×1·5m floating cages with three different net mesh sizes (1, 13, and 19mm) and four fish stocking densities (seabass—10, 20,30 and 40/m3; grouper —10/m3). A positive growth response and survival was observed with seabass and to a lesser extent with grouper with increasing net mesh size and decreasing fish stocking density. At the lowest tested density of 10 fish/m3 seabass survival increased from 5·0 to 95·0% and total cage fish biomass increased from −95·1% to +56·9% with an increase in net mesh size from 1 to 19mm over the 91-day culture trial, respectively. The results are discussed in relation to the current commercial marine finfish cage farming practices employed in Indonesia.  相似文献   

10.
To address the commercial nurseries problem of obtaining enough zooplankton of adequate species composition and size when fish larvae start to feed, a simulation of the effects of predation intensity on zooplankton composition in freshwater nursery ponds was carried out in an experimental system of twelve 130-liter containers. Treatments consisted of two densities (1 or 2 larvae l−1) of common carp stocked on the 4th day after filling the containers and a control without fish. Zooplankton–environment relationships were explored using factor analysis. Several groups of zooplankters that respond in different ways to fish larvae predation pressure were identified. The first factor was a general measurement of zooplankton abundance that mainly reflects allochthonous rotifer species that entered the system with the filling water, replaced in time by autochthonous species that hatched from resting eggs in the sediment. The second factor identified the direct effects of size selective fish predation, and the third showed indirect effects of high fish density. Larvae growth rate matched the plankton availability: high just after stocking, when they fed on the abundant but declining numbers of allochthonous rotifers; then decreased drastically and increased again when hatching of resting eggs of autochthonous rotifers and the availability of the crustacean preys preferred by the fish, increased. It was concluded that in commercial nurseries increased larvae production can be achieved just by stocking fish earlier than the 4th day after pond filling, to match the rotifer peak.  相似文献   

11.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

12.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

13.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

14.
Effects of zooplankton refuge on the growth of tilapia (Oreochromis niloticus) and plankton dynamics in pond were assessed by using 12 land-based experimental enclosures (7 m× 4 m) in a saline–alkaline pond. There were 4 treatments resulting from a combination of 2 stocking densities of tilapia (5 and 10 kg per enclosure) and 2 enclosure types (refuge and nonrefuge). Each treatment had three replicates. In the enclosures with refuge, all fish were excluded from a water column ¼ of the enclosure’s size with a polyethylene net (1.5 cm mesh size). Our field experiment showed that the individual gain in weight of tilapia increased 6.4 times with refuge treatment at the stocking density of 5 kg per enclosure than that in nonrefuge treatment. But at the stocking density of 10 kg per enclosure, the individual fish weight in all enclosures decreased due to the excessive density of fish stocking. Our results also showed that the refuge significantly increased the rotifer biomass and phytoplankton diversity and decreased the phytoplankton biomass (P < 0.05), but the copepod biomass was not affected by the refuge.  相似文献   

15.
The experimental rearing of T. nilotica in 1-m3 cages floating in Lake Kossou, Ivory Coast, was performed between March 1974 and April 1975. The fish were fed water-stable pellets (24.7% protein), the daily ration generally varying between 6 and 3.4% of the ichthyomass present. Fingerlings (9–55 g each) were stocked at densities of 200–400 fish/m3. They reached commercial size (more than 200 g) within 4–6 months, depending on the biomass present in the cage (stocking density and average individual weight of fish), as well as on limological conditions. The average annual mortality was 5.9%. Annual production varied from 36 to 64 kg/m3. The feed conversion rate averaged 2.8. A reduction of the daily ration for fish larger than 40 g reduced this value.Fingerlings should average at least 20–30 g in weight at initial stocking of the cage. Two crops a year can then be easily realized. If only male fish are reared, three harvests per year appear to be possible, increasing the annual cage production of fish close to 200 kg/m3 with proper management.The possible development of T. nilotica cage culture is actually hampered due to the lack of adequate fish feed available commercially, and to the lack of sufficient quantities of calibrated fingerlings throughout the year.  相似文献   

16.
Feeding copepods during early larval culture stages of marine fish has proven to be advantageous for growth and survival of marine finfish larvae. However, commercial availability of most copepods is limited; thus, there is an impetus to evaluate promising copepod species to meet the diverse dietary demands of various marine fish. The marine cyclopoid copepod, Oithona colcarva, was isolated out of zooplankton samples taken from waters within Tampa Bay, Florida. Once isolated, trials were conducted to determine the appropriate culture parameters for producing nauplii to feed marine fish larvae. The effects of temperature (22°C, 26°C and 30°C), salinity (15, 20, 25, 30 and 35 g L?1), stocking density (0.5, 1.0, 2.0, 4.0 and 8.0 individuals mL?1) and diet (Nanno 3600 microalgae paste, Colurella adriatica, Rhodomonas lens, Tisochrysis lutea, Chaetoceros gracilis and/or Tetraselmis chuii) on nauplii production during a single life cycle of reproducing individuals were examined. Results of those trials indicated that a culture temperature of 30°C and a salinity of 30 g L?1 were advantageous for maximum nauplii production. Furthermore, a diet containing a 1:1:1 mixture of T. lutea, C. gracilis and T. chuii and a stocking density of at least 8 individuals mL?1 were identified as beneficial. The results of these trials, the potential for large‐scale culture and observations on the performance of marine fish larvae fed Oithona colcarva nauplii are discussed.  相似文献   

17.
ABSTRACT

Animal protein, generally fish meal, has traditionally been used in the diet of channel catfish. However, our previous research indicates that animal protein is not needed for growing stocker-size catfish to food fish when the fish are stocked at densities typical of those used in commercial catfish culture. Whether this holds when fish are stocked at high densities is not known; thus, we conducted an experiment to evaluate the effect of feeding diets with and without fish meal to channel catfish stocked in earthen ponds at different densities. Two 32% protein-practical diets containing 0% or 6% menhaden fish meal were compared for pond-raised channel catfish, Ictalurus punctatus, stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each fish meal level?×?stocking density combination. Fish were fed once daily to satiation for two growing seasons. There was a significant interaction between stocking density and fish meal for net production; net production increased in fish fed a diet containing fish meal compared with those fed an all-plant diet at the highest stocking density, but not at the two lower stocking densities. Net production of fish fed diets with and without fish meal increased as stocking density increased. Viewing the main effect means, weight gain decreased and feed conversion ratio increased for fish stocked at the two highest densities, and survival was significantly lower at the highest stocking density. Visceral fat decreased in fish at the two highest stocking densities. Body composition data were largely unaffected by experimental treatment except for a reduction in percentage filet fat in fish at the highest stocking density, and fish that were fed diets containing fish meal had a lower percentage fillet protein and a higher percentage fillet fat. It appears that at stocking densities two to three times higher than generally used, animal protein (fish meal) may be beneficial in the diet of channel catfish. In regard to stocking densities, high stocking results in higher overall production, but the average fish size decreased as stocking density increased.  相似文献   

18.
Previous research showed that stocking 1.5 rohu (Labeo rohita) and 0.5 common carp (Cyprinus carpio) m−2 yields the highest production in small holder ponds in Bangladesh. The present study looked into the effects of additional stocking of Nile tilapia (Oreochromis nilotica) in fed or non‐fed ponds on water quality and fish production. A low, additional stocking density of 0.2 Nile tilapia m−2 was tested. All treatments were executed in triplicate in 100 m2 ponds and the duration of the experiment was 4.5 months. The results showed that tilapia addition increased nutrient concentrations and reduced total suspended solid concentration and phytoplankton biomass (P<0.05). Tilapia stocking resulted in additional production without affecting the growth and production of rohu and common carp. Supplemental feeding increased the nitrogen and phosphorus concentrations, phytoplankton availability and the growth and production of rohu and common carp (P<0.01). The combination of supplemental feeding and tilapia stocking resulted in a higher net yield than the other treatments (P<0.05). Stocking 1.5 rohu, 0.5 common carp and 0.2 tilapia m−2 in fed‐ponds is a good culture combination for polyculture farmers in South Asia.  相似文献   

19.
The pejerrey Odontesthes bonariensis (Valenciennes, 1835) is an inland water fish from the Pampas region comprising part of Argentina, Uruguay and the South of Brazil. Pejerrey is a very popular fish in this region and has a long history of domestic and international introductions, which attests to the high quality and market value of its flesh, as well as its attractiveness as a game fish. The desirable characteristics of pejerrey also make it a good candidate for aquaculture, and the first trials on pejerrey cultivation (atheriniculture) were started more than a century ago in Argentina. In spite of the considerable interest in its development, little progress has been made and atheriniculture is still restricted to propagation and stocking for sport fishing purposes. In this review, we summarize the history of atheriniculture and the biological, technological, scientific, cultural and infrastructural constraints to pejerrey aquaculture development thus far. We also suggest possible scenarios of pejerrey aquaculture development compatible with the socio–economic conditions of South American countries. Our projections also take into consideration recent scientific findings on the biology of pejerrey and technological advances in seafood processing, storage and transportation, as well as the latest trends of seafood consumption and international markets. The best production strategy remains to be determined by trial and error but it is likely that, initially, production should focus on a differentiated, high‐quality fish for the premium or international markets rather than attempting to compete with the cheap fish from natural sources. An international cooperation project with Japan has successfully demonstrated the feasibility of breeding pejerrey in captivity and mass producing seeds efficiently in Argentina, and has provided the foundation for the development of intensive and extensive farming of this species.  相似文献   

20.
Mud spiny lobsters, Panulirus polyphagus (Herbst, 1793), were reared at four different stocking sizes and stocking densities in open sea cages to evaluate their effects on growth performance. To evaluate the effect of stocking size on the growth performance, the lobsters were segregated into four different treatment groups according to size and were stocked at a density of 300 animals per cage. To evaluate the effect of stocking density on the growth performance, lobsters of 81–100 g were stocked in four different stocking densities, i.e. 16/m2, 24/m2, 32/m2 and 40/m2. The results showed that the growth rate of (60–80 g) size group, was significantly higher compared to the size groups, i.e. 101–120 g and 121–140 g comprising of larger individuals. The final body weight, though significantly higher in 81–100 g as compared to 60–80 g, the growth performance (i.e. weight gain percentage (WG %) and specific growth rate (SGR)) were not significantly different. The density‐dependent influence on growth performance was evident in this study. The WG % and SGR during 90 days’ culture period was significantly higher in 24/m2 compared to other groups. This study provides crucial information about the appropriate stocking density and stocking size of lobsters at the field level, which would help to promote sustainable lobster cage farming by maximizing the production potential of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号