首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two 12‐wk rearing experiments were conducted to examine the effect of rearing salinities of 10–35 ppt on the growth of 3‐ and 170‐g‐size tiger puffer, Takifugu rubripes. Fish were reared in a closed recirculation system without introducing fresh culture water at 23 C and were fed commercial pellet diet for tiger puffer twice or three times daily to apparent satiation each, almost everyday. Growth of 3‐g‐size fish seemed to increase with decreasing salinity; however, there were no significant differences in the specific growth rate and weight gain among treatments because of differences in initial body weight. Final body weight and length of fish reared at 10 ppt were significantly higher than those for fish reared at 30 ppt although initial sizes were similar. Differences were not found for the feed efficiency (FE) and daily feed consumption. Apparent relationships were not observed between salinity and blood characteristics or proximate compositions of muscle of the cultured fish. Differing from smaller fish, growth of 170‐g‐size fish tended to decrease with decreasing salinity from 30 to 10 ppt and with increasing salinity from 30 to 35 ppt. Similar trends for FE were observed.  相似文献   

2.
A feeding experiment was conducted to examine the potential use of defatted soybean meal (SBM) and freeze‐dried meat of blue mussel (BM) as partial replacement of fish meal in the diet of tiger puffer. Eight experimental diets were formulated, in which 0, 20, 40 and 60% fish meal protein were replaced with SBM (S0B0, S20B0, S40B0, and S60B0), and 40 and 60% with a combination of SBM and BM (S30B10, S20B20, and S45B15, S30B30). Fish of 11 g initial body weight were fed the diets to satiation twice daily, 6 d/wk for 8 wk at 20 C. Specific growth rate, feed efficiency, and protein efficiency ratio (PER) of fish fed diets containing SBM as an alternative protein source for fish meal decreased with increasing level of SBM, and these parameters of fish fed S40B0 and S60B0 diets were significantly lower than those of the control. Growth of fish in dietary groups containing BM were statistically identical to those in the control, and tended to increase with increasing level of dietary BM both at 40 and 60% substitution levels. Growth and feed utilization of fish fed S20B20 were almost the same to those in the control.  相似文献   

3.
Abstract

Two trials evaluated winter feeding strategies for small golden shiners, Notemigonus crysoleucas destined for the crappie, Po-moxis spp. market. Fish were stocked at 615 g/pool (approximately 127 or 158 fish/m2, trials 1 and 2, respectively) in aerated, 5.9-m2 pools for 100 and 104 days, respectively. In the first trial, fish were fed a commercially available 32% crude protein crumbled, extruded pellet once daily at feeding rates of 0% (fertilizer only), 1%, or 2% of body weight/day (bw/d) on days when the afternoon air temperature was >7°C. Unfed fish lost weight, and their condition declined. Fish fed at 1% maintained both weight and condition, while fish fed at 2% gained weight. Fish in the second trial were fed once daily at 1% bw/d on those days when the air temperature was either >7°C or >10°C, with either a commercially available crumbled, extruded pellet or a sinking pellet (compressed). Fish fed crumbles were in significantly better condition at harvest than fish fed a sinking pellet, regardless of trigger feeding temperature, although average weight was not significantly different. Feeding on days with air temperatures >7°C provided 13% more feeding days than a trigger temperature >10 °C, and fish grew more over the winter. Two condition indices, relative weight (Wr) and Fulton's condition factor (K), proved useful in evaluating the condition of golden shiners cultured using different feeding strategies.  相似文献   

4.
Compensatory growth of juvenile olive flounder, Paralichthys olivaceus L., and changes in proximate composition and body condition indexes of fish during fasting and after refeeding were investigated during the summer season. Groups of 25 fish each (initial body weight of 16 g) were randomly distributed into fifteen 180‐L flow‐through tanks. Fish were fed the experimental diet containing crude protein 46.9% and crude lipid 8.0% with estimated energy level of 14.6 kJ/g diet for 6 d/wk. Five treatments in triplicate were prepared for this study: C, S1, S2, S3, and S4. Fish in the control group (C) were hand‐fed to apparent satiation twice daily. Fish in treatments S1, S2, S3, and S4 experienced 1, 2, 3, and 4 wk of starvation and were then hand‐fed to apparent satiation twice daily during the remaining 7, 6, 5, and 4 wk of the experiment, respectively. A group of starved fish in the similar size was stocked and fasted throughout the 8‐wk feeding trial for chemical and blood analysis. The feeding trial lasted for 8 wk. Weight of fish linearly decreased with week of starvation (P < 0.0001). Linear relationship between condition factor (CF) and hepatosomatic index (HSI) against week of starvation was observed in the starved group of fish. Survival was not significantly (P > 0.05) affected by feeding strategy. However, weight gain and specific growth rate (SGR) of olive flounder in C, S1, and S2 were significantly (P < 0.05) higher than those of fish in S3 and S4. The poorest weight gain and specific growth rate (SGR) were obtained in fish of S4. Feed consumption of olive flounder in C, S1, and S2 was significantly (P < 0.05) higher than that of fish in S3 and S4. Feed efficiency, protein efficiency ratio, and protein retention of olive flounder in C and S1 were not significantly (P > 0.05) different from those of fish in S2 but significantly (P < 0.05) higher than those of fish in S3 and S4. Hematocrit, CF, and HSI of olive flounder were not significantly (P > 0.05) affected by feeding strategy. Chemical composition of fish was not significantly (P > 0.05) affected by feeding strategy. In considering these results, it can be concluded that juvenile olive flounder have the ability to fully compensate for 2‐wk feed deprivation during the summer season. Besides, feed efficiency in fish fed for 7 and 6 wk after 1‐ and 2‐wk feed deprivation was comparable to that in fish fed for 8 wk.  相似文献   

5.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

6.
Largemouth bass (LMB), Micropterus salmoides, are a highly desirable food fish especially among Asian populations in large cities throughout North America. The primary production method for food‐size LMB (>500 g) has been outdoor ponds that require two growing seasons (18 mo). Indoor, controlled‐environment production using recirculating aquaculture system (RAS) technologies could potentially reduce the growout period by maintaining ideal temperatures year‐round. Researchers conducted a 26‐wk study to evaluate optimal stocking densities for growout of second‐year LMB to food‐fish size in an indoor RAS. LMB fingerlings (112.0 ± 38.0 g) were randomly stocked into nine 900‐L tanks to achieve densities of 30, 60, or 120 fish/m3 with three replicate tanks per density. The RAS consisted of a 3000‐L sump, ¼ hp pump, bead filter for solids removal, mixed‐moving‐bed biofilter for nitrification, and a 400‐watt ultraviolet light for sterilization. Fish were fed a commercially available floating diet (45% protein and 16% lipid) once daily to apparent satiation. At harvest, all fish were counted, individually weighed, and measured. Total biomass densities significantly increased (P ≤ 0.05) with stocking rate achieving 6.2, 13.2, and 22.9 kg/m3 for fish stocked at 20, 60, and 120 fish/m3, respectively. The stocking densities evaluated had no significant impact (P > 0.05) on survival, average harvest weight, or feed conversion ratio which averaged 92.9 ± 5.8%, 294.5 ± 21.1 g, and 1.8 ± 0.3, respectively. After approximately 6 mo of culture, LMB did not attain target weights of >500 g. Observed competition among fish likely resulted in large size variability and overall poor growth compared to second‐year growth in ponds. Additional research is needed to better assess the suitability of LMB for culture in RAS.  相似文献   

7.
Diets containing 28% and 32% crude protein were compared for pond‐raised channel catfish Ictalurus punctatus stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48.5 g/fish were stocked into 30 0.04‐ha ponds. Five ponds were randomly allotted for each dietary protein ± stocking density combination. Fish were fed once daily to satiation for two growing seasons. There were no interactions between dietary protein concentration and stocking density for any variables. Dietary protein concentrations (28% or 32%) did not affect net production, feed consumption and weight gain per fish, feed conversion ratio, survival, processing yields, fillet moisture, protein and ash concentrations, or pond water ammonia and nitrite concentrations. Fish fed the 32% protein diet had slightly but significantly lower levels of visceral and fillet fat than fish fed the 28% protein diet. As stocking density increased, net production increased, while weight gain of individual fish, feed efficiency, and survival decreased. Stocking densities did not affect processing yield and fillet composition of the fish. Although highly variable among different ponds and weekly measurements, ponds stocked at the highest density exhibited higher average levels of total ammonia‐nitrogen (TAN) and nitrite‐nitrogen (NO2‐N) than ponds stocked at lower densities. However, stocking density had no significant effect on un‐ionized ammonia‐nitrogen (NH3‐N) concentrations, calculated based on water temperature, pH, and TAN. By comparing to the reported critical concentration, a threshold below which is considered not harmful to the fish, these potentially toxic nitrogenous compounds in the pond water were generally in the range acceptable for channel catfish. It appears that a 28% protein diet can provide equivalent net production, feed efficiency, and processing yields as a 32% protein diet for channel catfish raised in ponds from advanced fingerlings to marketable size at densities varying from 14,820 to 44,460 fish/ha under single‐batch cropping systems. Optimum dietary protein concentration for pond‐raised channel catfish does not appear to be affected by stocking density.  相似文献   

8.
Inclusion of the water-soluble fraction of blue mussels Mytilus galloprovincialis as a feed additive was examined with tiger puffer Takifugu rupbripes. The control diet mainly consisted of fish meal, potato starch, and pollack liver oil. Experimental diets were formulated to replace 30% and 40% of the fish meal protein with defatted soybean meal (SBM), and were supplemented with 0–20% mussel extracts. Fish of 18 g initial body weight were fed each diet to satiation, twice daily, 6 days per week for 7 weeks at 20°C. Weight gain and protein efficiency ratio of fish fed the diet containing SBM without the extract were significantly lower than those of the control at the 30% replacement level. Addition of 5% or 10% extract improved the growth and feed utilization to levels comparable to those of the control. At 40% substitution, statistically identical growth and feed performance to the control were obtained for diets supplemented with 10% or 20% extract; however, performance for 5% addition was significantly lower. Thus, the water-soluble fraction of blue mussels would be an effective feeding stimulant in aquaculture feed for tiger puffer that makes it possible to replace 30–40% of fish meal protein with SBM.  相似文献   

9.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

10.
The impact of stocking density on growth performance, physiological indicators, and body composition of juvenile blunt snout bream in recirculating aquaculture system was investigated in this study. Juvenile blunt snout bream were raised at stocking densities of 75, 150, 225, 300, and 450 fish/m3 for 12 wk with three replicate tanks at each density. All treatment tanks were supplied with water from the same recirculating system to ensure uniformity of water quality across groups. This study has shown that higher stocking densities had a negative effect on individual growth performance. Final body mass, specific growth rate (SGR), and weight gain decreased significantly as stocking density increased. Individual body mass as well as body length were more uniform in fish stocked at densities of 75 and 150 fish/m3 than in other groups. Stocking densities of 225 and 300 fish/m3 resulted in significant increases in serum total protein, triglyceride, lactate, and cholesterol levels, whereas blood glucose concentrations decreased significantly. In addition, decreased body lipid content and increased body moisture content were observed at stocking densities of 300 and 450 fish/m3. Overall, a density of 150 fish/m3 resulted in higher SGR and more uniform size among juvenile blunt snout bream.  相似文献   

11.
ABSTRACT:   Two feeding experiments were conducted to elucidate growth performance of tiger puffer in a 10 m3 water volume closed system. In experiment 1, 1000 fish of 3.5 g average body weight were fed tiger puffer commercial feed twice daily to apparent satiation, 6 days a week for 224 days. Sand-filtered sea water was used and no water was exchanged during the rearing period. Immediately after cutting of lower teeth at day 112, daily feed consumption decreased greatly and 60 fish died in few days. Feeding rates recovered and then decreased gradually as nitrate levels increased from 600–1048 mg N/L. Fish grew to 343 g with 91% survival rate and 87% feed efficiency. Rearing conditions of experiment 2 were similar to experiment 1, except that culture water was exchanged to maintain the nitrate level less than 600 mg N/L during the 224-day experiment. Mortality and reduction of feed consumption occurred immediately after teeth cutting as was observed in experiment 1. Significant reduction of feed intake was not found during other rearing periods. Fish of 3 g grew to 303 g with 91% survival rate and 72% feed efficiency.  相似文献   

12.
Growout production of the camouflage grouper, Epinephelus polyphekadion (Bleeker), in a 10-m3-capacity fibreglass tank culture system was evaluated, using hatchery-produced fingerlings (56-59 g initial weight) at stocking densities of five, 15 and 45 fish m?3. During the first 9 months of a 12-month growout period, the fish were fed twice a day with a moist pellet feed containing 40.9% protein. From month 10 onwards until harvest, the fish were fed moist pellets in the morning and trash fish in the evening at a 1:1 ratio. The final weight of fish at harvest was up to 900 g, with mean weights of 544.6 ± 170.72 g at five fish m?3, 540.2 ± 150.82 g at 15 fish m-?3 and 513.3 ± 134.52 g at 45 fish m?3. The results showed no significant differences (P > 0.05) in growth rate and fish size between the different stocking densities tested. The average daily growth rate ranged from 0.62 to 3.38 g fish?1 day?1, with mean weights of 1.49 ± 0.74 g fish?1 day?1 at five fish m?3 through 0.53 to 2.38 g fish?1 day?1, 1.32 ± 0.57 g fish?1 day?1 at 15 fish m?3 to 0.48-3.32 g fish?1 day?1 and 1.31 g fish?1 day?1 at 45 fish m?3 stocking density. Although up to 100% survival was observed at the lowest stocking density, the survival rate significantly decreased (P < 0.05) with increasing stocking density. The food conversion ratio (FCR) significantly decreased (P <0.05) with increasing stocking densities, showing efficient feed utilization with increasing stocking densities of E. polyphekadion. The FCR averaged 2.1 at a stocking density of 45 fish m?3. The yield in terms of kg fish produced m?3 of water used in the culture system significantly increased (P < 0.001) from five to 45 fish m?3. The yield averaged 17.3 ±0.53 kg m?3 at a stocking density of 45 fish m?3. The present results show that the present tank culture system could sustain more biomass in terms of increasing fish stocking densities. The growth performance of E. polyphekadion observed during this investigation has been reviewed with other grouper species.  相似文献   

13.
The study was conducted to determine the optimum stocking density for rearing tilapia. Oreochromis spilurus (Günther), fingerlings in tanks during winter using warm (21-26°C) underground sea water (37%o). Seawater-acclimated fingerlings with mean weight of 2 g were stocked in eighteen 400-1 fibreglass tanks at 750 and 1000 fish m?3. Fish were fed at the rates of 2.5, 3.0 and 3.5% day?1 of the fish biomass. After 83 days, the mean individual daily weight gain was significantly higher (P < 0.028) at stocking of 750 fish m?3 than at 1000 fish m?3. Feed conversion ratio was significantly higher at stocking of 1000 fish m?3 than at 750 fish m?3 and at feeding rate of 3.5% day1 than at 2.5% day?1. However, because no significant differences were observed on survival rates between the two stocking densities and among feeding rates, it is recommended that the stocking density of 1000 fish m?3 and a feeding rate of 2.5% day?1 be used for optimum production of tilapia fingerlings in tanks during winter using warm underground sea water.  相似文献   

14.
A 2 × 3 factorial feeding trial was conducted to determine effects of dietary Ca/P ratio and dietary microbial phytase on growth, mineral digestibility and vertebral mineralization in tiger puffer. The treatments consisted of three levels of Ca/P ratios (0.5, 1.0 and 1.5) combined either with phytase (2000 FTU kg?1 diet) or without supplementation, respectively. The Ca/P ratios were achieved by supplementing calcium at 0, 6 and 12 g kg?1 combined with the same level of inorganic P at 5 g kg?1. After a 50‐day feeding trial, puffer fish fed the diet at low Ca/P ratio (0.5) together with phytase had significantly higher growth rate and feed intake (FI) than other groups. Both dietary Ca/P ratio and phytase supplement were independent effects on plasma minerals and alkaline phosphatase. Interactive effect between both dietary treatments was observed on P and Zn contents in vertebrae and whole body. P and Zn digestibilities tended to increase with increased Ca/P ratio from 0.5 to 1.0, especially when phytase was supplemented. In conclusion, fish fed a diet with highest Ca/P ratio (1.5) showed the poorest growth performance and nutrients utilization. Dietary Ca/P ratio of 0.5 (without Ca supplement) with 2000 FTU phytase per kg would be the optimum combination in the diet of tiger puffer.  相似文献   

15.
本实验以平均初始体重为15.60 g的红鳍东方鲀(Takifugu rubripes)幼鱼为研究对象,研究饲料中蛋白含量及养殖密度对红鳍东方鲀幼鱼生长性能、氮排泄及相关生理生化指标的影响。设计两因素三水平(2×3)实验,配制3种不同蛋白梯度(38.87%、45.55%和51.00%,干重)的等脂实验饲料,设置3个密度梯度为1.53 kg/m3 (0.196 m3体积的实验桶,每桶20尾鱼)、2.30 kg/m3(每桶30尾鱼)和3.06 kg/m3(每桶40尾鱼)。每组饲料设3个重复,养殖实验为期56 d,在室内流水系统内进行。结果显示,增重率在高、中蛋白组显著高于低蛋白组(P<0.05),但当饲料蛋白含量一定时,养殖密度对增重率没有显著性影响。饲料蛋白含量和养殖密度对鱼体常规成分没有显著性影响。当饲料蛋白一定时,高密度组的血清总蛋白和胆固醇含量显著高于中密度组(P<0.05)。血清总蛋白含量在低蛋白组显著高于中蛋白组(P<0.05)。血清碱性磷酸酶含量在低蛋白组显著高于高蛋白组(P<0.05)。饲料蛋白含量和养殖密度对红鳍东方鲀幼鱼的生长、氨氮排泄没有显著性交互作用。静水投喂3 h后,氨氮排泄率在高密度组显著高于低密度组(P<0.05)。研究表明,45.55%饲料蛋白质含量已经能够满足红鳍东方鲀幼鱼正常生长的需求。饲料蛋白含量和养殖密度对红鳍东方鲀幼鱼的生长性能和氨氮排泄没有显著性交互作用。  相似文献   

16.
ABSTRACT

Animal protein, generally fish meal, has traditionally been used in the diet of channel catfish. However, our previous research indicates that animal protein is not needed for growing stocker-size catfish to food fish when the fish are stocked at densities typical of those used in commercial catfish culture. Whether this holds when fish are stocked at high densities is not known; thus, we conducted an experiment to evaluate the effect of feeding diets with and without fish meal to channel catfish stocked in earthen ponds at different densities. Two 32% protein-practical diets containing 0% or 6% menhaden fish meal were compared for pond-raised channel catfish, Ictalurus punctatus, stocked at densities of 14,820, 29,640, or 44,460 fish/ha. Fingerling channel catfish with average initial weight of 48 g/fish were stocked into 30 0.04-ha ponds. Five ponds were randomly allotted for each fish meal level?×?stocking density combination. Fish were fed once daily to satiation for two growing seasons. There was a significant interaction between stocking density and fish meal for net production; net production increased in fish fed a diet containing fish meal compared with those fed an all-plant diet at the highest stocking density, but not at the two lower stocking densities. Net production of fish fed diets with and without fish meal increased as stocking density increased. Viewing the main effect means, weight gain decreased and feed conversion ratio increased for fish stocked at the two highest densities, and survival was significantly lower at the highest stocking density. Visceral fat decreased in fish at the two highest stocking densities. Body composition data were largely unaffected by experimental treatment except for a reduction in percentage filet fat in fish at the highest stocking density, and fish that were fed diets containing fish meal had a lower percentage fillet protein and a higher percentage fillet fat. It appears that at stocking densities two to three times higher than generally used, animal protein (fish meal) may be beneficial in the diet of channel catfish. In regard to stocking densities, high stocking results in higher overall production, but the average fish size decreased as stocking density increased.  相似文献   

17.
Growth, survival and production of endangered Indian butter catfish (Ompok bimaculatus) fingerlings were examined at different stocking densities. The experiment was conducted for 8 months in nine earthen ponds having an area of 0.03 ha each. 30‐day‐old fingerling, stocked at 40 000 ha?1 was designated as treatment‐1 (T1), 50 000 ha?1 as treatment‐2 (T2) and 60 000 ha?1 as treatment‐3 (T3). At stocking, all fingerlings were of same age group with a mean length and weight of 3.36 ± 0.08 cm and weight of 0.83 ± 0.02 g respectively. Fish in all the treatments were fed with a mixture of rice bran (50%), mustard oil cake (30%), fish meal (19%) and vitamin‐mineral premix (1%). Physicochemical parameters, plankton populations and soil parameters were at the optimum level for fish culture. Highest weight gain was observed in T1 and lowest in T3. Final length, weight and survival of fish also followed the same trend as weight gain. Highest specific growth rate was observed in T1 followed by T2 and T3. Feed conversion ratio was significantly lower in T1 followed by T2 and T3 in that order. Significantly higher amount of fish was produced in T1 than T2 and T3 respectively. Higher net benefit was obtained from T1 than from T2 and T3. Overall, the highest growth, survival and benefit of fish were obtained at a density of 40 000 fingerlings ha?1. Hence, of the three stocking densities, 40 000 fingerlings ha?1 appears to be the most suitable stocking density for culturing of Indian butter catfish in grow‐out system.  相似文献   

18.
This study aimed at investigating the physiological responses of Piaractus mesopotamicus exposed to high stocking density and the potential protective role of supplemented diets. Fish were fed with basal, red seaweed (Pyropia columbina) or β‐carotene‐supplemented diets for 90 days. Then, fish were distributed at low (1.5 g/L) and high (22 g/L) stocking densities for 15 days. Fish exposed to the high density showed increased hepatosomatic index, haemoglobin content and mean corpuscular haemoglobin concentration (all diets); decreased haematocrit, mean corpuscular volume (basal and seaweed) and white blood cells count (all diets) were observed. High density‐exposed fish showed decreased plasmatic metabolites as well as the hepatic lipids content in basal and seaweed diets. Regarding oxidative stress, increased activity of glutathione S‐transferase in high density‐exposed fish muscle (all diets), and lower lipid peroxidation in liver (basal and β‐carotene) and intestine (basal and seaweed) were evidenced. Interactions between diet and stocking density were recorded regarding the triglycerides (decrease in fish exposed to high density fed with basal and seaweed) and hepatic lipids (decrease in fish exposed to high density fed with basal). The major changes occurred in haematologic and metabolic parameters as strategies to cope with overcrowding stress. Fish response to stocking density was not affected by diets.  相似文献   

19.
Juvenile channel catfish were fed purified diets supplemented with magnesium (Mg) from Mg sulfate at levels of 0, 200, 400, 600, 800, and 1,000 mg/kg and 0, 200, 400, 600, and 800 mg/kg in two separate feeding studies. In study I, the effect of dietary levels of Mg on growth response, vertebral mineral content, and macrophage chemotaxis were evaluated. Study II had similar objectives except that whole body mineral content was measured, and resistance of channel catfish to Edwardsiella ictaluri challenge was also determined. Fish with an average weight of 10.89 g were stocked at a rate of 50 fish/110‐L aquarium (study I). In study II, fish with an average weight of 4.14 g were stocked at rates of 40 fish/110‐L aquarium. Prior to stocking, each batch of fish was acclimated to laboratory conditions and fed the basal diet for 2 wk. The concentration of Mg in rearing water was 1.8 mg/L. Each diet was fed to fish in quadruplicate and triplicate aquaria to apparent satiation for 10 wk for studies I and II, respectively. Fish fed the basal diet started to die as early as 3 d after the study began (17 d of feeding the diet without Mg supplementation). In both studies, weight gain, survival, and feed efficiency were lowest for fish fed the basal diet but increased with increasing dietary levels of Mg. However, the differences between the values of each of these parameters for fish fed diets containing supplemental Mg were not always significant. Magnesium‐deficiency signs observed were anorexia, sluggishness, convulsions, deformed snout, vertebral curvature, muscle flaccidity, and high mortality. Vertebral and whole body ash concentrations were high, but Mg content was low for fish fed the basal and the 200‐mg Mg diets. Bone Ca content did not differ among fish fed different diets (study I), but whole body Ca tended to increase for fish fed the basal diet, suggesting the possibility of calcification of soft tissues. Macrophage chemotaxis in the presence of exoantigen was highest for fish fed diets supplemented with Mg at 400 and 200 mgkg for studies I and II, respectively. When expressed in terms of chemotaxis index, however, maximum or near maximum value was observed at a dietary Mg level of 400 mg/kg. Thus, a dietary level of Mg of 400 mg/kg from Mg sulfate was required for optimum growth and survival, maintaining high tissue levels of Mg, prevention of muscle flaccidity and skeletal deformity, and stimulating macrophage chemotaxis. Dietary levels of Mg had no effect on the resistance of juvenile channel catfish to Edwarsiella. ictaluri challenge.  相似文献   

20.
A 10‐wk feeding trial to determine the effect of daily feeding ratio on growth and body composition of subadult olive flounder fed the extruded pellet (EP) was performed during the summer season. Thirteen flounder (an initial body weight of 319 g) per tank were distributed into fifteen 500‐L flow‐through tanks. Five treatments of feeding ratio in 5% decrement were prepared in triplicate: 100 (satiation), 95, 90, 85, and 80% of satiation. Fish in the control group (100% of satiation) were hand‐fed to apparent satiation twice a day. Then, feed allowance in the rest of the four groups was determined based on average feed consumption of fish in the control group. Weight gain of fish fed to 100% of satiation was significantly (P < 0.05) higher than that of fish fed to 85 and 80% of satiation but not significantly (P > 0.05) different from that of fish fed to 95 and 90% of satiation. Serum total protein, glucose, and glutamic pyruvic transaminase were not significantly (P > 0.05) affected by feeding ratio but triglyceride and glutamic oxaloacetic transaminase were. In considering these results, it can be concluded that optimum daily feeding ratio for growth of subadult olive flounder seemed to be 90% of satiation when fish were fed the EP twice a day during the summer season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号