首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

The effect of three stocking densities (3, 6, and 13 animals/ m2) on growth, survival, biomass, harvest rate, and the size distribution of 3-month-old marron, Cherax tenuimanus(3.1 ± 0.1 g mean initial weight), was assessed in a 160-day trial in a recirculating system. There was no difference (P>0.05) in specific growth rates (SGR) at the end of 160 days. Survival of marron at 13/m2 was significantly lower than marron stocked at 3 and 6/m2 (70.0% and 57.5%, respectively). Harvest rate of marron stocked at 6/m2 was 101.3 g/m2, which was significantly higher than the harvest rate of marron stocked at 3 and 13/m2 (48.7 g/m2 and 58.7 g/m2, respectively). By the end of the trial, the densities of all treatments had decreased to the same level (2.3 to 3.0/m2). Final size frequency distribution of marron at the stocking density of 6/m2 was flat and less positively skewed as compared to the 3 and 13/m2treatments. Therefore, the stocking density of 6/m2 is recommended under semi-controlled environment.  相似文献   

2.
This research was conducted to investigate the effect of stocking density on the growth performance and yield of Oreochromis niloticus in cage culture in Lake Kuriftu. The treatments had stocking densities of 50 (50F), 100 (100F), 150 (150F), and 200 (200F) fish per m?3. All treatments were in duplicate. Juveniles with an average weight of 45. 76±0.25 g were stocked in the treatments. The fish were fed a composite mixture of mill sweeping, cotton seed, and Bora food complex at 2% of their body weight twice per day using feeding trays for 150 days in powdered form. The growth performance of O. niloticus was density dependent. The final mean weight of O. niloticus ranged 147.76±0.28–219.71±1.42 g and the mean daily weight gain was 0.69±0.01–1.15±0.02 g day?1. Fish held in cages with lower density were heavier than the ones held at higher densities, and showed higher weight gain and daily weight gain. The most effective stocking density, in terms of growth parameters, was 50 fish m?3. The gross yield (4.5–20.55 kg cage?1) showed a significant difference with increasing stocking density (P<0.05). Moreover, the apparent food conversion ratio (2.48–7.22) was significantly affected by stocking density (P<0.05). However, survival rate was not affected by stocking density (P>0.05). It can be concluded that the most effective stocking densities were at 50 fish m?3 cage for larger size fish demand in a short period and 200 fish m?3 for higher gross production with supplementary feed.  相似文献   

3.
The impact of stocking density on growth performance, physiological indicators, and body composition of juvenile blunt snout bream in recirculating aquaculture system was investigated in this study. Juvenile blunt snout bream were raised at stocking densities of 75, 150, 225, 300, and 450 fish/m3 for 12 wk with three replicate tanks at each density. All treatment tanks were supplied with water from the same recirculating system to ensure uniformity of water quality across groups. This study has shown that higher stocking densities had a negative effect on individual growth performance. Final body mass, specific growth rate (SGR), and weight gain decreased significantly as stocking density increased. Individual body mass as well as body length were more uniform in fish stocked at densities of 75 and 150 fish/m3 than in other groups. Stocking densities of 225 and 300 fish/m3 resulted in significant increases in serum total protein, triglyceride, lactate, and cholesterol levels, whereas blood glucose concentrations decreased significantly. In addition, decreased body lipid content and increased body moisture content were observed at stocking densities of 300 and 450 fish/m3. Overall, a density of 150 fish/m3 resulted in higher SGR and more uniform size among juvenile blunt snout bream.  相似文献   

4.
Stocking density is an important factor affecting growth in aquaculture. The main objectives of this study are to evaluate the effects of different stocking densities on Holothuria arguinensis and Holothuria mammata's growth and determine the optimal density. Four different stocking densities were selected for H. arguinensis (1, 3, 5 and 7 ind/0.2 m2) and three for H. mammata (6, 10 and 12 ind/0.5 m2). Growth (specific growth rate (SGR) and growth rate (GR)), weight change, coefficient of variation and productivity were estimated, additionally the feeding rate on H. mammata. Growth on H. arguinensis decreased as the stocking density increased, showing the higher growth at the stocking density of 1 ind/0.2 m2 (SGR: 1.24%/day ± 0.16 and GR: 0.94 g/day ± 0.05), with a 104.65% (±9.98) of weight change. The best H. mammata growth was registered at 10 ind/m2 (SGR: 0.56% ± 0.04%/day and GR: 0.48 ± 0.04 g/day) and 25.48% (±1.52) of weight change. H. mammata feeding rate decreased as stocking density increased. Crowding stress could be considered the main factor affecting the sea cucumbers growth and performance on our study. The optimal stocking density for H. arguinensis and H. mammata under tank‐based conditions were established as 1 ind/0.2 m2 and 5 ind/0.5 m2 respectively. The critic biomass for H. arguinensis (471.65 g/m2) and for H. mammata (988.11 g/m2) were reached during the experiment at the fourth and fifth weeks respectively. Therefore, to ensure and increase growth of these species under tank, their biomass should be maintained under those thresholds.  相似文献   

5.
We evaluated the effect of varying cage stocking density (60, 90 and 120 fish m?3) and feeding duration (10, 30 and 60 min) in a cage‐cum‐pond‐integrated system on growth performance, water quality and economic benefits in Labeo victorianus culture. Interactions between stocking density and feeding duration significantly (< 0.05) affected the fish growth performance and yields in the cages‐cum‐pond system. Stocking density of 60 fish m?3 resulted in the highest growth in cages and in ponds regardless of the feeding duration, but produced lower yields than at stocking density 90 fish m?3. The lowest Apparent Food Conversion Ratio (AFCR) in cages occurred at stocking density of 60 fish m?3 and feeding duration of 30 min. Growth performance in the open ponds declined with increased feeding duration of the caged fish. Survival in cages and in the open ponds decreased with increased cage density, but was not affected by feeding duration. Low dissolved oxygen were recorded, at stocking density of 120 fish m?3, the lowest DO occurred when feeding of caged fish lasted 60 min. Growth performance, water quality and economic benefits in Labeo victorianus culture positively respond to interaction between stocking density and feeding durations.  相似文献   

6.
The objective of this study was to assess the effects of stocking density on growth performance, serum biochemical parameters, and muscle texture properties of genetically improved farmed tilapia (Oreochromis niloticus, GIFT). Juvenile GIFT with an average initial weight of 12.54?±?0.45 g (mean?±?SD) were randomly stocked in 16 tanks (80 L) in a recirculation aquaculture system at four densities of 10 (D1), 20 (D2), 30 (D3), and 40 (D4) fish per tank for 56 days, with quadruplicate for each density. There were no significant differences in water temperature among the four treatments (P?>?0.05). D4 had the significantly lowest dissolved oxygen content (5.52 vs 5.69–6.09 mg L?1) (P?>?0.05) and pH (6.63 vs 6.87–7.20) (P?<?0.05). NO2-N and NH4-N concentrations significantly increased with increasing stocking density (P?<?0.05). Weight gain (WG) and specific growth rates (SGR) decreased with increasing stocking density. The lowest WG (617.20 vs 660.45–747.06%), SGR (3.52 vs 3.62–3.81% day?1), and highest feed conversion ratio (1.68 vs 1.53–1.58) were observed in D4. Fish at D4 had significantly lower condition factor (3.11 vs 3.29–3.37%) and survival rate (91.25 vs 97.50%) than those from D1 and D2 (P?<?0.05). With increasing stocking density, serum total cholesterol, triglyceride, and total protein concentrations decreased (P <?0.05) and aspartate aminotransferase and alanine aminotransferase activities increased (P <?0.05). D4 fish had higher moisture content (78.80 vs 76.97%) and lower crude protein content (18.14 vs 19.39%) in muscle than D1 fish (P?<?0.05). Compared to D1 and D2, D3 and D4 had lower muscle hardness (1271.54–1294.07 vs 1465.12–1485.65 g), springiness (0.62–0.65 vs 0.70–0.72), gumminess (857.33–885.32 vs 1058.82–1079.28 g), and chewiness (533.04–577.09 vs 757.53–775.69 g) (P <?0.05). High stocking density resulted in growth inhibition, declines in flesh quality, and disturbance to several serum biochemical parameters.  相似文献   

7.
The present study was conducted to determine the optimum stocking density of Horabagrus brachysoma fry during fingerling production in the hatchery. For this purpose, four density levels (400, 800, 1200 and 1600 fry/0.6 m3) were considered. The experiment of fry rearing continued for a period of six weeks. The total length and wet weight of fry were significantly highest (P < 0.05) at 400 fry/0.6 m3 density compared to the other three density treatments during the entire rearing period. At harvesting, the length and weight of fry stocked at 1200 and 1600 numbers/0.6 m3 were similar to each other, and both were significantly lower (P < 0.05) than those of fish stocked at 800/0.6 m3. The decreased SGR, percent weight gain, and survival were also observed at the two highest density treatments. But the total biomass was observed to be highest (P < 0.05) at 1600/0.6 m3 density compared to those of the other three densities. If individual size and number of individuals for stocking are not constraints, the maximum number of surviving fry from a minimum rearing space was achieved at a stocking density of 1600 fry/0.6 m3 tank.  相似文献   

8.
In this study, effects of stocking density on the growth performance and physiological responses of blunt snout bream, Megalobrama amblycephala juveniles were evaluated. The fish (average body weight, 25.76 ± 2.25 g) were randomly stocked at densities of 30F (30 fish/m3), 60F, 90F and 120F in 12 cages (1 m × 1 m × 1 m) in a concrete pond, with three cages for each density, for a period of 6 weeks. The higher stocking densities had a negative effect on individual growth performance. The results indicated that serum cortisol, triglyceride, alanine aminotransferase, aspartate transaminase, alkaline phosphatase and malondialdehyde activities; and Acinetobacter, Aeromonas, Pseudomonas and Vibrio numbers in the intestinal microflora increased significantly as the stocking density increased. In contrast, the viscerosomatic index, hepatosomatic index survival rate; serum glucose, total cholesterol, lipase, protease, glutathione peroxidase and superoxide dismutase activities; and Clostridium, Bacteroides, Lactococcus, Lactobacillus and Bacillus numbers in the intestinal microflora decreased significantly. The 90F and 120F groups showed obvious enlargement of the lamina propria and goblet cell damage, indicating that the gut showed inflammatory responses. The specific growth rate and weight gain rate increased significantly as the stocking density increased from 30 to 60 fish/m3, but decreased significantly when the stocking density was over 60 fish/m3.  相似文献   

9.
This study was conducted to investigate the effect of stocking density (125 or 200 fish m?3) on the growth performance of three strains of the Nile tilapia, Oreochromis niloticus: the non‐improved strain (NS), the genetically improved farmed tilapia (GIFT) and the Freshwater Aquaculture Center selected tilapia known as the FaST selected line (SL). Each strain and density combination was triplicated in 0.42 m3 fibreglass tanks within a re‐circulating water system. Water temperature was maintained at 29.0±1.0°C. Large Nile tilapia having a mean body weight of 100–110 g were stocked in each tank and hand‐fed four times daily with commercial tilapia pellets (35% protein) for 104 days. Results showed that at the two stocking densities, the GIFT and SL strains showed a significantly higher (P<0.05) mean weight (MWT), daily growth rate (DGR), specific growth rate (SGR), feed conversion ratio (FCR) and gross yield (GY) than the NS. In all three strains, growth performance was negatively affected by stocking density. The lower density (125 fish m?3) treatments had significantly higher MWT, DGR and SGR than the higher density one (200 fish m?3). However, higher FCR and GY were observed at the higher density. Survival rates were high in all treatments and were not affected by strain or density. In general, the SL strain had better growth parameters than the GIFT strain. The findings of this study demonstrated the superior growth performance of the improved strains at both densities compared with the NS. The higher density (200 fish m?3) could be more profitable for the tilapia farms in Kuwait than the lower density of (125 fish m?3) in terms of reduced land cost and facilities, demand on the limited low‐salinity underground water and manpower.  相似文献   

10.
We examined the potential for producing the large numbers of sandfish (Holothuria scabra) needed for restocking programmes by co-culturing juveniles with the shrimp Litopenaeus stylirostris in earthen ponds. Our experiments in hapas within shrimp ponds were designed to detect any deleterious effects of sandfish on shrimp, and vice versa. These experiments showed that a high stocking density of juvenile sandfish had no significant effects on growth and survival of shrimp. However, survival and growth of sandfish reared with shrimp for 3 weeks were significantly lower than for sandfish reared alone. Increased stocking density of shrimp also had a significant negative effect on survival and/or growth of sandfish. A grow-out trial of juvenile sandfish in 0.2-ha earthen ponds stocked with 20 shrimp post-larvae m− 2, and densities of sandfish between 0.8 and 1.6 individuals m− 2, confirmed that co-culture is not viable. All sandfish reared in co-culture were dead or moribund after a month. However, sandfish stocked alone into 0.2-ha earthen ponds survived well and grew to mean weights of ∼ 400 g within 12 months without addition of food. The grow-out trial demonstrated that there is potential for profitable pond farming of sandfish in monoculture. Further research is now needed to identify the optimal size of juveniles, stocking densities and pond management regimes.  相似文献   

11.
Stocking density is a biotic factor affecting the production of cultivated animals in aquaculture. Herein, a rearing trial was conducted to investigate the impact of stocking density on the survival, growth performance and physical injury of Marsupenaeus japonicus juveniles in a flowing water aquaculture system. Five stocking densities were examined in this study, that is, 10, 20, 40, 80 and 160 individuals/m2. Throughout the experiment, ammonia nitrogen and nitrite concentrations ranged from 0.02 ± 0.006 mg/L to 0.08 ± 0.035 mg/L and 0.002 ± 0.001 mg/L to 0.076 ± 0.021 mg/L respectively. The survival rate, specific growth rate (SGR), weight gain (WG), absolute growth rate (AGR) and coefficient of variation for weight (CV) across the stocking densities ranged from 90.38 ± 3.20% to 94.33 ± 4.73%, 1.42 ± 0.16%/day to 1.53 ± 0.05%/day, 1.09 ± 0.19 g to 1.15 ± 0.16 g, 0.018 ± 0.003 g/day to 0.019 ± 0.004 g/day and 16.21 ± 5.78% to 35.09 ± 10.68% respectively. Within the investigated densities, the survival rate and the abovementioned growth parameters were not significantly (p > .05) affected by the stocking density, consequently, a higher stocking density resulted in a significantly (p < .05) greater final biomass. The results regarding physical injury showed that the antennal breakage rate displayed a tendency of a positive correlation with the stocking density. Overall, the current study provides basic data for establishing a viable intensive farming system for Mjaponicus and a promising indicator for easily assessing the crowding stress status of Mjaponicus.  相似文献   

12.
Labeo rohita (139.92 ± 0.76 mm/24.33 ± 0.45 g) was reared for 92 days in floating square cages (10 m2 area, 1.5 m height) in a pond (2 ha) at six stocking densities (5, 7.5, 10, 15, 20 and 25 fish m?2) each with 3 replicates. Fish were fed daily once in the morning with rice polish and groundnut oil cake (1:1) in dough form at 3 % of the total body weight. Survival ranged from 96 to 100 % in different stocking densities. Final average body weight, average body weight gain, mean daily body weight gain and SGR decreased (P < 0.05) with increasing stocking density. Conversely, final biomass, biomass gain and FCR increased (P < 0.05) with increasing stocking density. The highest growth rate of fish could be achieved up to 60 days at 5 fish m?2 and 92 days at other densities. The reduced growth rate at 10–25 fish m?2 for 60 days of culture indicated that stress is related to size and density of the fish, suggesting that utmost care is required to reduce the stress at high densities. Maximum production and profit was observed at the highest stocking density. Non-lethal levels of water and soil qualities at different sites (cage premises, and 20 and 200 m away from cage area) suggested that cage aquaculture could be done safely covering 0.9 % of pond area. Production of advanced fingerlings in cages was found a viable alternative to their culture in pond.  相似文献   

13.
Growth parameters of whiteleg shrimp Litopenaeus vannamei and red seaweed Gracilaria corticata were measured using integrated culturing method under zero‐water exchange system in a 45‐day period. A 2 × 3 factorial design was used with two levels of shrimp stocking densities and three levels of seaweed weight densities. G. corticata was cultured on a net tied to a round polyethylene frame. Culture tanks were filled with 750‐L filtered seawater. A 40‐W compact fluorescent lamp was hung over each tank to provide adequate and sufficient light for seaweed growth. Growth parameters of shrimp and seaweed such as specific growth rate (SGR), weight gained (WG) and average daily growth (ADG) were computed based on the initial and final weight of shrimp and seaweed. The maximum and minimum SGR of L. vannamei (1.97 and 1.69%/day) were observed in treatment S1A3 (25 shrimp/m2 and 400 g seaweed/m2) and S2A1 (50 shrimp/m2 without seaweed) respectively. The best survival rate (94.67 ± 1.33%), WG (129.9 ± 2.9%) and feed conversion ratio (1.67 ± 0.04) were also observed in treatment S1A3. The SGR of G.corticata in the treatment S1A3 (1.97 ± 0.00%/day) was significantly higher, compared to others. Strong positive correlations were obtained between the density of G. corticata and the growth parameters of L. vannamei. The red seaweed G. corticata could boost the growth parameters, survival rate and total production of L. vannamei under zero‐water exchange system.  相似文献   

14.
Abstract.— The aquaculture performance of mutton snapper Lutjanus analis raised in floating net cages was assessed by measuring their growth, survival, and feed conversion rates during a growout trial conducted in a 3.2‐ha saltwater lake in the Florida Keys, Florida, USA. Approximately 10,500 hatchery‐reared finger‐lings were stocked in two circular, high‐density polyethylene (HDPE) net cages of 7‐m diameter × 7‐m deep (300 m2) and 10‐m diameter × 7‐m deep (600 m3) dimensions. Cages were stocked at 25 fish/m3 (3.2 kg/m3) and 5 fish/m3 (0.72 kg/m3), respectively. Fish grew from a mean of 16.5 g to 302.8 g (25.6 cm TL) in 246 days in the former cage and from a mean of 42.3 g to 245.6 g (23.8 cm TL) in 178 d in the latter cage. Growth rates in weight were best expressed by the following exponential equations: cage 1 (high stocking density): W = 20.716 e0.0112x (r2= 0.83); cage 2 (low stocking density): W = 38.848 e0.0118x (r2= 0.81). Length‐weight data indicate that hatcheryraised, cage‐cultured mutton snapper are heavier per unit length than their wild counterparts. There was no significant difference (P < 0.05) between the slopes of the two lines, indicating that fish in the two cages grew at the same rate. The length‐weight relationships for mutton snapper stocked in cages 1 and 2 are expressed, respectively, by the equations W = 0.000009 L 3.11 (r2= 0.99) and W = 0.000005 L 3.22 (r2= 0.97). Overall feed conversion rate for both cages combined was 1.4. Approximately 10% of the fish sampled exhibited some degree of deformity, particularly scoliosis. Overall survival rate was 70%. Results suggest that L. analis has potential for aquaculture development in net cage systems.  相似文献   

15.
The effect of stocking density on the growth of mulloway, Argyrosomus japonicus, was tested with 17 g fish stocked at 4.08, 8.16, or 16.32 kg m−3 in 50 l aquaria. Weight checks were carried out every 2 weeks to track performance. Each density treatment was also compared to a nonhandled control group to establish if handling during weight checks influenced the growth of mulloway. Mulloway performed poorly at the lowest density and, under the current experiment conditions, growth did not appear to be negatively affected by regular handling.  相似文献   

16.
The lined seahorse, Hippocampus erectus (Perry), is an important species in both medicinal and aquarium trades. The aim of this study was to evaluate the effects of stocking density (1, 3 and 5 individuals L−1) on the growth performance and survival of the early-stage juvenile H. erectus. The height (HT), wet weight, weight gain (WG) and specific growth rate (SGR) were affected significantly by the stocking density during the 40-day study. The HT, WG and SGR of the seahorse at 1 and 3 juveniles L−1 were significantly higher than that at 5 juveniles L−1. The survival of juveniles at the three stocking densities was not significantly different at day 25 (90.3 ± 4.5%, 86.7 ± 4.2% and 86.2 ± 3.8% for 1, 3 and 5 juveniles L−1 respectively), but was significantly different at day 40 (87.8 ± 3.9%, 69.6 ± 4.2% and 52.9 ± 2.8% for 1, 3 and 5 juveniles L−1 respectively). For the early-stage juvenile H. erectus, we recommend a stocking density of 3 juveniles L−1, but the density should be reduced to 1–2 juveniles L−1 to avoid reduced and variable growth and high mortality after 25 days.  相似文献   

17.
The experimental rearing of T. nilotica in 1-m3 cages floating in Lake Kossou, Ivory Coast, was performed between March 1974 and April 1975. The fish were fed water-stable pellets (24.7% protein), the daily ration generally varying between 6 and 3.4% of the ichthyomass present. Fingerlings (9–55 g each) were stocked at densities of 200–400 fish/m3. They reached commercial size (more than 200 g) within 4–6 months, depending on the biomass present in the cage (stocking density and average individual weight of fish), as well as on limological conditions. The average annual mortality was 5.9%. Annual production varied from 36 to 64 kg/m3. The feed conversion rate averaged 2.8. A reduction of the daily ration for fish larger than 40 g reduced this value.Fingerlings should average at least 20–30 g in weight at initial stocking of the cage. Two crops a year can then be easily realized. If only male fish are reared, three harvests per year appear to be possible, increasing the annual cage production of fish close to 200 kg/m3 with proper management.The possible development of T. nilotica cage culture is actually hampered due to the lack of adequate fish feed available commercially, and to the lack of sufficient quantities of calibrated fingerlings throughout the year.  相似文献   

18.
密度胁迫对点带石斑鱼幼鱼生长、代谢的影响   总被引:6,自引:1,他引:5  
点带石斑鱼(Epinephelus malabaricus)幼鱼体质量(15±0.5)g,将其随机分为4组,每缸(直径60 cm×水深50cm)分别放养10尾、20尾、30尾、40尾幼鱼,密度分别相当于1.1 kg/m~3,2.1 kg/m~3,3.2 kg/m~3,4.2 kg/m~3,并分别标记记为G,O,G_20,G_30,G_40,每组3个重复,养殖6周后对幼鱼进行生长性能、饲料系数、血液指标及肝脏中相关酶活性进行分析以研究密度胁迫对点带石斑鱼幼鱼生长、代谢的影响.结果表明:1)G_10组幼鱼增重率显著低于其他各组(P<0.05),G_20组增重率最高且显著高于其他组(P<0.05).各组间特定生长率的变化与增重率的变化趋势类似.G_10和G2_20组的饲料系数显著低于G_30组(P<0.05),G_40组饲料系数最高且显著高于其他各组(P<0.05).2)G_30和G_40组间血浆皮质醇含量无显著差异(P>0.05),但均显著高于G_10和G_20组(P<0.05),G_10组皮质醇含量显著低于G_20组((P<0.05).血糖含量呈现与皮质醇含量相同的变化趋势.3)G_30和G_40组谷丙转氨酶活性均显著高于G_10和G_20组(P<0.05),各组谷草转氨酶活性随养殖密度的升高而升高;G_40组乳酸脱氢酶活性最高,与G_30组无明显差异(P>0.05),但G_40与2个低密度组(G_10和G_20)差异显著(P<0.05);乙酞胆碱酯酶活性随养殖密度的升高而降低.结果表明,养殖密度过高或过低都会对点带石斑鱼幼鱼的生长与代谢造成负面影响,20尾/缸(2.1 kg/m~3)是较为适宜的养殖密度.本研究旨在为工厂化养殖点带石斑鱼提供理论依据.  相似文献   

19.
Macrobrachium rosenbergii (de Man 1879) juveniles (0.4 g) were cultured in experimental cages (L × W × H: 2.5 × 1 × 1 m) in Laguna de Bay, the largest lake in the Philippines. The following stocking densities at four replicates each were used: 15, 30, 60 and 90 prawns m−2 of cage bottom. The mean sizes at harvest after 5 months of culture ranged from 14.3 g for the highest stocking density to 26.3 g for the lowest. The mean size at harvest, daily growth rate and size class distribution were significantly influenced by stocking density, with those at the lowest stocking density showing significantly better growth and overall proportion of larger prawns. Heterogeneous individual growth (HIG) was fairly evident in all treatments. The percentage of blue‐clawed males was not influenced by treatment but the mean weight was significantly higher in the lower stocking densities. Both the percentage and mean weight of berried females were significantly higher in the lowest stocking density. Survival was the highest in the lower stocking densities (55.3%, 54.0%, 52.7% and 36.9% for 15, 30, 60 and 90 prawns m−2 respectively). Feed conversion ratio (FCR) improved with decreasing stocking density, ranging from 2.1 to 3. As expected, yield per cropping increased with stocking density and ranged from 450 to 1089 g m−2 yr−1 of actual cage area. Production values obtained in the cage cultured M. rosenbergii were comparable to or even higher than those reported from pond culture, given that the stocking densities used in this study were generally higher than in ponds. The results show that the farming of M. rosenbergii in cages in lakes is a viable alternative to pond culture and has the potential of improve aquaculture production in lakeshore fish farming communities.  相似文献   

20.
To address the preference of mud crab farmers for larger size Scylla serrata juveniles (5.0–10 g body weight or BW; 3.0–5.0 cm internal carapace width or ICW), a study was conducted to compare the growth and survival of crab juveniles (2.0–5.0 g BW; 1.0–3.0 cm ICW) produced a month after stocking of megalopae in net cages when reared further in net cages installed in earthen ponds or when stocked directly in earthen ponds. In a 3 × 2 factorial experiment, three stocking densities (1, 3 and 5 ind m−2), two types of rearing units (net cages or earthen pond) were used. Megalopae were grown to juvenile stage for 30 days in net cages set inside a 4000 m2 brackishwater pond and fed brown mussel (Modiolus metcalfei). Crab juveniles were then transferred to either net cages (mesh size of 1.0 mm) or earthen ponds at three stocking densities. After 1 month, no interaction between stocking density and rearing unit was detected so data were pooled for each stocking density and rearing unit. There were no significant differences in the growth or survival rate of crab juveniles across stocking density treatments. Regardless of stocking density, survival in net cages was higher (77.11±6.62%) than in ponds (40.41±3.59%). Growth, however, was significantly higher for crab juveniles reared in earthen ponds. The range of mean BW of 10.5–16.0 g and an ICW of 3.78–4.33 cm obtained are within the size range preferred by mud crab operators for stocking grow‐out ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号