首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

2.
An 8‐week growth trial was conducted to investigate the effects of dietary Arg levels (7.6, 12.3, 17.9, 22.4 and 28.6 g/kg diet) on growth performance, hepatopancreatic antioxidant capacity, intestinal morphology and growth‐related gene expressions of juvenile grass carp (Ctenopharyngodon idellus). The results showed that SGR in Arg22 and Arg28 groups was lower than in Arg12 and Arg17 groups (p < 0.05). Serum NO content in Arg7 group was lower than other groups. Hepatopancreatic GSH‐Px activity was higher in Arg17 group than in Arg7 group, while MDA content showed the opposite trend. Hepatopancreatic IGF‐1 expression tended to increase with Arg from 7.6 to 22.4 g/kg and then decreased in Arg28 group (p < 0.05), while IGFBP‐1 expression increased with Arg level. Muscle mRNA expressions of TOR and S6K1 showed quadratic trends as dietary Arg level increased, which were higher in Arg17 group than in Arg22 and Arg28 groups (p < 0.05). Higher mRNA expression levels of y+LAT1, y+LAT2 and PepT1, as well as higher villus height and villus width in foregut, were all observed in Arg17 group. The optimal dietary Arg level based on SGR by the quadratic model was 15.3 g/kg diet for juvenile grass carp, corresponding to 54.7 g/kg dietary protein.  相似文献   

3.
Six practical extruded diets were formulated to investigate the effect of graded levels of starch (17, 22, and 26%) associated with either 30 or 34% protein level on growth, feed utilization, body composition, and hepatic transaminases of juvenile grass carp, Ctenopharyngodon idella. Over an 8‐wk growth trial, survival rates (99–100%) were not significantly affected (P > 0.05) by dietary treatments. Independent of dietary starch level, weight gain (WG, %), specific growth rate (SGR, %/d), and feed efficiency ratio (FER) showed significant better response (P < 0.05) of fish fed 34% protein diet than those of fish fed 30% protein diet. Protein productive value (PPV) was only affected by dietary protein level, with higher values in the 34% protein level than their 30% counterparts. Irrespective of dietary protein level, lipid productive value (LPV), energy productive value (EPV), viscerosomatic index (VSI, %), intraperitoneal fat ratio (IPF, %), and whole body, liver, and muscle lipid level increased with increasing starch supply. At the same protein level, plasma triacylglycerol (TG), cholesterol (CHO), and low density lipoprotein‐cholesterol (LDL‐C) increased when dietary starch level increased from 17 to 26%. Neither dietary protein level nor starch level affected activities of hepatic alanine aminotransferase (ALAT) and aspartate transferase (ASAT). The overall results in this study suggested that the higher 34% protein was superior for juvenile grass carp and an increase in dietary starch level did not improve growth or protein utilization but enhanced whole‐body lipid deposition and liver, viscera and muscle lipid level. The diet containing 34% protein and 17% starch was optimal for practical production of juvenile grass carp.  相似文献   

4.
镁对草鱼生长、形体、肝功能和糖代谢的影响   总被引:1,自引:0,他引:1  
在以酪蛋白和明胶为蛋白源的纯化日粮(镁含量76.9 mg/kg)中添加不同水平的镁(0、150、300、600、1200和2400 mg/kg),研究镁对体重为(10.68±0.14)g的草鱼(Ctenopharyngodon idella)生长、形体、肝功能和糖代谢的影响,时间为10周.结果显示:日粮中适当添加镁显著...  相似文献   

5.
This study was conducted to investigate graded levels of dietary zinc on the growth, flesh quality, and the relationship between flesh quality and muscle antioxidant status in young grass carp (Ctenopharyngodon idella Val.). Per cent weight gain (PWG), special growth rate (SGR), feed intake (FI), feed conversion ratio (FCR), anti‐hydroxy radical (AHR), superoxide dismutase (SOD), catalase (CAT), glutathione reducase (GR) activities and glutathione (GSH) content were significantly increased with increasing levels of Zn up to a point, and thereafter declined (P < 0.05). Serum zinc, alkaline phosphatase (AKP), muscle anti‐superoxide anion (ASA), glutathione peroxidase (GPx), glutathione‐S‐transferase (GST) activities and collagen content were significantly enhanced with dietary zinc levels up to a point (P < 0.05), beyond which it plateaued. Cooking loss, shear force and malondialdehyde (MDA) were significantly reduced with increasing level of zinc up to a point, and thereafter increased (P < 0.05). The pH value significantly increased with the increasing zinc levels, whereas the trend of protein carbonyl content was opposite. Flesh quality was positively related to the antioxidant enzymes activities in muscle of young grass carp. These results indicated that optimum zinc could improve growth, and improve flesh quality partly through improving muscle antioxidant status of young grass carp.  相似文献   

6.
A feeding experiment was conducted to determine the optimum selenium requirement in juvenile Nile tilapia. Each of six purified diets with Se‐methionine levels at 0.05, 0.21, 0.41, 0.57, 0.79 and 1.00 mg/kg was assayed in triplicate with initial body weight of 3.00 ± 0.01 g for 8 weeks. The growth of fish was obviously increased when the dietary Se was less than 0.57 mg/kg diet and reached a plateau when the dietary Se was ≥0.57 mg/kg. Serum and hepatopancreatic glutathione peroxidase (GPx) activity increased markedly when the dietary Se was less than 0.57 mg/kg, but then decreased when the dietary Se was higher than 0.57 mg/kg. The malondialdehyde contents in hepatopancreas were significantly decreased when the dietary Se was higher than 0.79 mg/kg. No significant differences were observed in hepatopancreatic total antioxidant capability (T‐AOC) among the groups (p > .05). The results of this study indicated that Se addition as Se‐methionine was essential, while both the deficiency and excess levels of dietary Se would cause negative effects on growth or antioxidant capability in juvenile Nile tilapia. Based on broken‐line regression of WG and piecewise regression of liver GPx, the optimum requirement of Se for juvenile Nile tilapia is 0.57 mg/kg diet.  相似文献   

7.
Dietary thiamin requirement of juvenile grass carp, Ctenopharyngodon idella, was to investigate in this experiment. Eight purified diets were formulated with graded levels of thiamin (0.1, 0.6, 1.1, 2.1, 5.5, 9.8, 21.2, and 41.8 mg/kg, respectively). Each diet was fed to triplicate groups of 40 fish (initial average weight 10.7 ± 0.2 g) for 12 wk in 400‐L aquaria (R = 1 m, h = 0.6 m). Results showed that weight gain rate, specific growth rate, feed efficiency, protein efficiency ratio, and hepatosomatic indice of fish increased before dietary thiamin increased to the optimum level, then remained similar thereafter (P > 0.05). Thiamin concentration in fish liver was positively correlated with dietary thiamin and it stayed in stable when dietary thiamin level exceed 5.0 mg/kg. The serum biochemical indices analysis showed that dietary thiamin had significant effects on serum triglycerides, total cholesterol, glucose, pyruvate contents, and lactate dehydrogenase activity. Body composition was unaffected by dietary thiamin. Broken‐line regression analysis showed that, a dietary thiamin level of 1.3 mg/kg diet was adequate for optimum growth, and 5.0 mg/kg for maximum liver thiamin accumulation.  相似文献   

8.
在纯化饲料中分别添加生物素0、0.05、0.10、0.20、0.40、0.80、1.60 mg/kg投喂初始质量为(5.92±0.25)g的草鱼(Ctenopharyngodon idellus)幼鱼8周,研究了不同生物素添加量对草鱼幼鱼生长性能、饲料系数、机体营养成分、血清生化指标的影响。试验结果显示:与对照组相比,添加生物素提高了草鱼幼鱼的增重率、特定生长率,降低了饲料系数。添加量为0.40 mg/kg时草鱼幼鱼的特定生长率和增重率最大,饲料系数最低,并与对照组存在显著差异(P<0.05);添加不同水平生物素对草鱼幼鱼全鱼水分、粗蛋白、粗脂肪含量无显著影响,但添加量为0.40 mg/kg时粗蛋白含量最大。0.10 mg/kg组和0.20 mg/kg组的全鱼灰分含量显著高于对照组(P<0.05);添加生物素对血清总蛋白(TP)、血糖(GLU)和总胆固醇(TC)无显著影响,但显著提高了血清甘油三酯(TG)含量,各添加组TG含量均显著高于对照组(P<0.05),1.60 mg/kg添加组的高密度脂蛋白胆固醇(HDL-C)和低密度脂蛋白胆固醇(LDL-C)含量显著高于对照组(P<0.05)。综合本试验结果,草鱼幼鱼饲料中生物素适宜添加量为0.40 mg/kg。  相似文献   

9.
A 60‐day feeding trial was conducted to estimate the effects of dietary iron (Fe) levels on growth, Fe concentration in the liver, spleen, and blood, and transferrin and hepcidin concentrations in the blood of bighead carp (Aristichthys nobilis). The six experimental diets were formulated to contain different Fe levels (0, 43.1, 84.2, 123.3, 162.2 and 203.1 mg/kg of dry diet) using ferrous sulphate (FeSO4) as the source. The weight gain (WG) and the specific growth ratio (SGR) of A. nobilis fed with a dietary Fe level of 123.3 mg/kg were significantly higher than that of the 0 mg/kg Fe group (p < .05). The results indicated that the growth was affected by dietary Fe levels. Regression analysis of WG and SGR at different levels of dietary Fe suggests that the appropriate dietary requirement of Fe for the bighead carp larvae is 120–134.36 mg/kg. The Fe contents in different tissues were as follows: spleen > liver > whole body. When the Fe dietary content increases to 162.2 mg/kg, the blood concentrations of Fe significantly decreased and thereafter increased, hepcidin significantly decreased and thereafter decreased, and transferrin significantly increased and thereafter decreased. The results indicate that the transferrin blood content significantly increased with decreasing hepcidin of up to 264.63 μg/ml content and thereafter decreased. It could be concluded that after transferrin saturation, hepcidin functions to maintain iron balance in the blood of A. nobilis by decreasing transferrin content.  相似文献   

10.
The study was to investigate effects of dietary chlorogenic acid (CGA) on growth performance, flesh quality and serum biochemical indices of grass carp (95.1 ± 0.3 g) (Ctenopharyngodon idella) fed seven different diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g kg–1) and CGA‐supplemented diets containing 100, 200, 400, 600 and 800 mg/kg CGA. Contents of collagen and alkaline‐insoluble collagen in muscle and skin were significantly increased by dietary CGA and EU (< .05). Total essential amino acids (TEAA) and total amino acids (TAA) in muscle of grass carp fed EU diet or 400, 600 and 800 mg/kg CGA diet were significantly higher than those of fish fed control diet and 100 and 200 mg/kg CGA diet (< .05). Fish fed 200–800 mg/kg CGA showed significantly lower muscle crude lipid content than EU, control and 100 mg/kg CGA groups (< .05). Fish fed CGA‐supplemented diets (100–800 mg/kg) had significantly higher muscle fibre density and lower muscle fibre diameter than control group (p < .05). In conclusion, supplementation of CGA improved flesh quality of grass carp, and supplemental level of CGA for improving flesh quality and growth was estimated to be 400 mg/kg diet.  相似文献   

11.
Five triplicate groups containing 15 Jian carp (33.51 ± 1.91 g) were fed five isonitrogenous (30%) and isolipidic (8%) diets, with an increase in silkworm chrysalis oil (SCO) to replace soybean oil (SO) at 0 (SO), 25 (SCO25), 50 (SCO50), 75 (SCO75), or 100% (SCO100) levels for 59 d. Results showed that the SCO50 and SCO75 groups presented higher thermal growth coefficients than the SO and SCO100 groups and lower feed conversion ratios than the SCO100 group (P < 0.05). Moreover, the 50% SCO‐supplemented level decreased hepatopancreas lipid content and increased muscle crude protein content (P < 0.05). Meanwhile, α‐linolenic acid, n‐3 polyunsaturated fatty acid (PUFA) content, and n‐3/n‐6 PUFA ratio increased in the hepatopancreas, and intraperitoneal fat and muscle as the replacement of SO increased (P < 0.05). No significant differences of the serum biochemical indices and hepatopancreatic malondialdehyde content were found among groups (P > 0.05), but hepatopancreatic superoxide dismutase activities in the SCO25 and SCO50 groups were significantly higher than those in the other groups (P < 0.05). There was no significant difference in muscularis coat thickness, fold height, and fold width in the mid‐intestine (P>0.05). Overall, up to 50 or 75% replacement of SO by SCO in the diet of Jian carp could improve growth performance without affecting the health status of the fish.  相似文献   

12.
杜仲对草鱼生长、肌肉品质和胶原蛋白基因表达的影响   总被引:1,自引:1,他引:0  
为研究杜仲对草鱼生长性能、肌肉品质及胶原蛋白基因COL1A1和COL1A2表达的影响,实验采用初始体质量为(215.0±0.4)g的草鱼120尾,随机分为2处理组(每组3重复,每重复20尾鱼),分别饲喂基础饲料(对照组)和添加2%杜仲的实验饲料(杜仲组),养殖时间为8周。结果显示,与对照组相比,添加2%杜仲对草鱼生长性能无显著影响,但能显著增加肌肉、皮肤和肝脏胶原蛋白水平,增加肌肉总必需氨基酸(TEAA)、总氨基酸(TAA)水平。2%杜仲可显著降低草鱼肌肉的冷冻失水率、离心失水率,但对肌纤维密度和肌纤维直径无显著影响。在胶原蛋白基因表达方面,2%杜仲显著增加了第4周、8周时草鱼的肌肉、皮肤和第8周时的肝脏组织COL1A1、COL1A2基因m RNA表达量。研究表明,饲料中添加2%杜仲可改善大规格草鱼的肌肉品质。  相似文献   

13.
A 60‐day feeding trial was conducted to examine the effects of different levels (0, 100, 200, 400 and 600 mg/kg) of antimicrobial peptides on growth, protease activity of foregut, the morphology of foregut villi and related genes mRNA expression level in the common carp (Cyprinus carpio). The results showed that the feed of antimicrobial peptides promote common carp growth, and the optimal dosage of antimicrobial peptides is 200–333 mg/kg in the common carp feed. The protease activity of 200 and 400 mg/kg groups were significantly higher than the control and other groups (p < 0.05). The foregut villus height with 100, 200 and 400 mg/kg antimicrobial peptide groups were significantly higher than control group (p < 0.05). The crypt depth of 200 and 400 mg/kg antimicrobial peptide groups were significantly lower than control group (p < 0.05). The ratio of villus height and crypt depth of 100, 200 and 400 mg/kg antimicrobial peptide groups were significantly higher than control group (p < 0.05). The ratio with 600 mg/kg group was significantly lower than the control group (p < 0.05). The IGF‐I gene expression level of 200 mg/kg and 400 mg/kg groups were significantly higher than the control group and 600 mg/kg group (p < 0.05). The IL‐1β gene expression level of 100 mg/kg and 200 mg/kg groups were significantly higher than the control group (p < 0.05). These results indicated up‐regulation of growth and immune related genes in antimicrobial peptides fed common carp. Correlation analysis showed that IGF‐I mRNA and IL‐1β mRNA were positively correlated with SGR. IL‐1β mRNA and FCR were significantly negative correlated. It indicated that growth and immune gene common regulated the growth of the carp under antimicrobial peptides intervention. In conclusion, antimicrobial peptides can improve growth and related genes mRNA expression in the common carp. Further studies using molecular biological technique or immunologic methods are required to conclude that antimicrobial peptides are beneficial in common carp.  相似文献   

14.
为探讨肌醇对草鱼生长、脂质代谢及抗氧化机能的影响,以实用饲料配方为基础,分别添加0(对照)、50、100、150、200、300和400 mg/kg肌醇,配制成7组等氮等脂的饲料,每组饲料设4个重复,每个重复饲喂初始体质量为(15.00±0.15)g的草鱼25尾,养殖56 d。结果显示,饲料中添加100~150 mg/kg肌醇能显著提高草鱼终末均重(FBW)、增重率(WGR)、特定生长率(SGR)及饲料效率(FE);随饲料肌醇添加水平的上升,全鱼脂肪、肝脏脂肪和脂肪沉积率先升后降,在50~300 mg/kg均与对照组存在显著差异,且均在100 mg/kg达到最大值。肌肉脂肪则逐渐下降并趋于稳定,在100 mg/kg达到最小值,100~400 mg/kg差异不显著;肠脂肪酶、血浆总胆固醇(TC)、甘油三酯(TG)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C)含量及高密度/低密度脂蛋白胆固醇(HDL-C/LDL-C)均呈先升后降的趋势,除LDL-C在各组间差异不显著外,其余指标均在100~150 mg/kg达到最大值;添加肌醇能显著增强肝脏和肌肉中肉碱脂酰转移酶(CPT-I)和乙酰辅酶A羧化酶(ACC)的活性。与对照组相比,100 mg/kg肝脏CPT-I的增幅比例低于ACC的增幅比例,肌肉则相反;当肌醇添加水平为100~150 mg/kg时,肝脏和肌肉中超氧化物歧化酶(SOD)的活性显著升高,丙二醛(MDA)含量及血浆中谷丙转氨酶(ALT)、谷草转氨酶(AST)均显著降低。研究表明,实用饲料添加适宜的肌醇能改善草鱼的生长、饲料转化和肝脏功能,促进脂肪消化,加快脂肪酸的合成与分解代谢,使全鱼和肝脏增脂、肌肉降脂,且能够提高肝脏和肌肉的抗氧化机能。以FE和SGR为效应指标,草鱼实用饲料肌醇适宜添加量为90.3~96.4 mg/kg。  相似文献   

15.
To determine dietary magnesium (Mg) requirements of juvenile grass carp, Ctenopharyngodon idella, magnesium sulphate was added to the basal diet at 0, 150, 300, 600, 1200, 2400 mg Mg kg−1 diet. Each diet was fed to three replicate groups of juvenile grass carp (initial weight: 7.69 ± 0.13 g) in a closed, recirculating rearing system for 76 days. No mortality or nutritional deficiency signs were observed except the growth depression in fish fed the Mg‐deficient diet. Growth performance and activities of serum superoxide dismutase (SOD), glutathione peroxidase (GPx) and lysozyme (LSZ) were highest (P <0.05) in fish fed the diet supplemented with 600 mg Mg kg−1. The serum malondialdehyde (MDA) content was higher (P <0.05) in fish fed the diets supplemented with 0 and 150 mg Mg kg−1 than that in fish fed the diets with ≥300 mg Mg kg−1. Mg concentrations both in whole‐body and vertebrae increased with the increase in dietary Mg level up to 300 mg kg−1, whereupon the response reached a plateau. Analysis by second‐order polynomial regression of weight gain, by broken‐line regression of vertebrae Mg concentration and by linear regression of whole‐body Mg retention of fish indicated that the adequate dietary Mg concentration for juvenile grass carp was 713.5, 627.7 and 469.8 mg kg−1 diet, respectively.  相似文献   

16.
Two, 8‐week feeding trials were conducted to compare protein‐sparing capability of dietary lipid in herbivorous grass carp (Ctenopharyngodon idella) and omnivorous tilapia (Oreochomis niloticus × O. aureus). Utilizing a 2 × 3 factorial design, experimental diets containing two levels of crude protein (380 and 250 g kg−1) and three levels of lipid (0, 40 and 100 g kg−1) were formulated for use in both feeding trials. Growth performances showed better response of both fish fed 380 g kg−1 protein diet than those fed 250 g kg−1 protein diet. Despite the dietary protein level, weight gain (WG), specific growth ratio (SGR), feed conversion ratio (FCR) and protein efficiency ratio were much higher (P < 0.05) for grass carp fed 40 g kg−1 lipid diet than those fed 100 g kg−1 lipid diet; however, there were no significant differences in tilapia fed the two diets. The feed intake of grass carp fed lipid‐free diet was the lowest, but it tended to decrease with increase in dietary lipids in tilapia. Lipid retention (LR) was negatively correlated with dietary lipid concentration of both fish. Viscerosomatic index (VSI), hepatosomatic index (HSI), intraperitoneal fat ratio (IPF) and whole‐body and liver lipid content positively correlated with dietary lipid concentration of both fish. Plasma parameters and liver enzymes activities were also positively correlated with dietary lipid concentration of both fish. Liver lipid contents were higher and enzymes activities were lower in grass carp when compared with tilapia. These data suggested that there was no evidence of a protein‐sparing effect of dietary lipids in grass carp. Tilapia has relatively higher capacity to endure high dietary lipid level compared to grass carp.  相似文献   

17.
A 63‐day growth trial was undertaken to estimate the effects of supplemented lysine and methionine with different dietary protein levels on growth performance and feed utilization in Grass Carp (Ctenopharyngodon idella). Six plant‐based practical diets were prepared, and 32CP, 30CP and 28CP diets were formulated to contain 320 g kg?1, 300 g kg?1 and 280 g kg?1 crude protein without lysine and methionine supplementation. In the supplementary group, lysine and methionine were added to formulate 32AA, 30AA and 28AA diets with 320 g kg?1, 300 g kg?1 and 280 g kg?1 dietary crude protein, respectively, according to the whole body amino acid composition of Grass Carp. In the groups without lysine and methionine supplementation, weight gain (WG, %) and specific growth rate (SGR, % day?1) of the fish fed 32CP diet were significantly higher than that of fish fed 30CP and 28CP diets, but no significant differences were found between 30CP‐ and 28CP‐diet treatments. WG and SGR of the fish fed 32AA and 30AA diets were significantly higher than that of fish fed 28AA diets, and the performance of grass carp was also significantly improved when fed diets with lysine and methionine supplementation (P < 0.05), and the interaction between dietary protein level and amino acid supplementation was noted between WG and SGR (P < 0.05). Feed intake (FI) was significantly increased with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05), but feed conversion ratio (FCR) showed a significant decreasing trend (P < 0.05). Two days after total ammonia nitrogen (TAN) concentration test, the values of TAN discharged by the fish 8 h after feeding were 207.1, 187.5, 170.6, 157.3, 141.3 and 128.9 mg kg?1 body weight for fish fed 32CP, 32AA, 30CP, 30AA, 28CP and 28AA diets, respectively. TAN excretion by grass carp was reduced in plant‐based practical diets with the increase in dietary protein level and the supplementation of lysine and methionine (P < 0.05). The results indicated that lysine and methionine supplementation to the plant protein sources‐based practical diets can improve growth performance and feed utilization of grass carp, and the dietary crude protein can be reduced from 320 g kg?1 to 300 g kg?1 through balancing amino acids profile. The positive effect was not observed at 280 g kg?1 crude protein level.  相似文献   

18.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

19.
This study investigates the effects of inclusion of low levels of dietary short chain fructooligosacchairde (sc‐FOS) on physiological response and intestinal microbiota of carp (Cyprinus carpio) larvae. After acclimation, fish (550 ± 20 mg) were allocated into nine tanks (40 fish per tank) and triplicate groups were fed a control diet (0%) or diets containing 0.5% and 1% sc‐FOS for 7 weeks. At the end of the experiment, the growth performance parameters (final weight, weight gain, specific growth rate (SGR), food conversion ratio (FCR) and condition factor (CF), survival rate as well as digestive enzyme activities (amylase, lipase and protease), total viable counts of heterotrophic aerobic bacteria (TVC) and lactic acid bacteria (LAB) level in intestinal microbiota were measured. Our results revealed no significant (P > 0.05) effects of sc‐FOS on growth performance and TVC when compared with the control group. However, administration of low levels of dietary sc‐FOS significantly increased digestive enzyme activities (lipase and amylase) and LAB levels (P < 0.05). Also, survival rate was significantly elevated in sc‐FOS fed carp. These results revealed that administration of low levels of sc‐FOS can be considered as a beneficial dietary supplement for larval stage of common carp.  相似文献   

20.
This study evaluated the effects of dietary γ‐aminobutyric acid (GABA) on the growth performance, serum biochemical indices and antioxidant status of pharaoh cuttlefish, Sepia pharaonis. Cuttlefish were cultured in open‐culturing cement pool systems for 8 weeks. Six practical diets supplemented with graded levels of GABA (0, 20, 40, 60, 80 and 100 mg/kg) were formulated. Each diet was randomly assigned to triplicate groups of 60 cuttlefish (mean weight: 10.33 g), the cuttlefish were fed two times per day to apparent satiation. The results showed that the specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) significantly increased with dietary GABA supplementation (p < .05). The survival rate (SR) and protein content in muscle significantly increased when 58.9 mg/kg GABA supplied. Moreover, the nitric oxide (NO) content and acid phosphatase (ACP) activity in serum were significantly increased with dietary GABA supplementation (p < .05), while the activity of aspartate aminotransferase (AST) in serum decreased significantly when supplied with GABA at 58.9 mg/kg (p < .05). In addition, dietary GABA improved antioxidation activity by significantly increasing the activities of superoxide dismutase (SOD) and catalase (CAT) but decreasing malondialdehyde (MDA) levels in the liver and gill (p < .05). On the basis of the quadratic regression analysis of FE, the optimum content of dietary GABA in S. pharaonis was estimated to be 55.3 mg/kg. The findings of this study demonstrated that dietary GABA had a positive effect on the growth performance, serum biochemical indices and antioxidant status of S. pharaonis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号