首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was to investigate effects of dietary chlorogenic acid (CGA) on growth performance, flesh quality and serum biochemical indices of grass carp (95.1 ± 0.3 g) (Ctenopharyngodon idella) fed seven different diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g kg–1) and CGA‐supplemented diets containing 100, 200, 400, 600 and 800 mg/kg CGA. Contents of collagen and alkaline‐insoluble collagen in muscle and skin were significantly increased by dietary CGA and EU (< .05). Total essential amino acids (TEAA) and total amino acids (TAA) in muscle of grass carp fed EU diet or 400, 600 and 800 mg/kg CGA diet were significantly higher than those of fish fed control diet and 100 and 200 mg/kg CGA diet (< .05). Fish fed 200–800 mg/kg CGA showed significantly lower muscle crude lipid content than EU, control and 100 mg/kg CGA groups (< .05). Fish fed CGA‐supplemented diets (100–800 mg/kg) had significantly higher muscle fibre density and lower muscle fibre diameter than control group (p < .05). In conclusion, supplementation of CGA improved flesh quality of grass carp, and supplemental level of CGA for improving flesh quality and growth was estimated to be 400 mg/kg diet.  相似文献   

2.
The aim of this study was to investigate effects of dietary geniposide (GP) on growth performance, flesh quality, and lipid metabolism of grass carp, Ctenopharyngodon idella (95.2 ± 0.6 g), fed seven different diets, including a control diet; Eucommia ulmoides (EU)–supplemented diet (20 g/kg); and GP‐supplemented diets containing 100, 200, 400, 600, and 800 mg/kg GP, respectively. Weight gain rate was significantly improved (P < 0.05) and feed conversation ratio was significantly decreased (P < 0.05) by supplementation of EU. Grass carp fed 100–800 mg/kg GP‐supplemented diets showed significantly higher total collagen and alkaline‐insoluble collagen content in muscle than control (P < 0.05). Contents of total collagen and the alkaline‐insoluble collagen content in the skin of grass carp were significantly increased by dietary 600–800 mg/kg GP and EU (P < 0.05). Fish fed diets containing 600–800 mg/kg GP showed significantly lower muscle crude lipid content than the EU, control, and 100–400 mg/kg GP groups (P < 0.05). Fish fed 400–800 mg/kg GP diets had significantly higher muscle fiber density and lower muscle fiber diameter and serum triglyceride level than the control (P < 0.05). In conclusion, supplementation of GP could improve flesh quality, but not growth of grass carp. The supplemental level of GP for improving flesh quality was estimated to be a 400–600 mg/kg diet.  相似文献   

3.
This study was conducted to investigate the effects of dietary geniposidic acid (GA) on growth performance, flesh quality and collagen gene expression of grass carp (Ctenopharyngodon idella). The fish with an initial body weight of 47.1 ± 0.8 g were fed one of the seven diets, including control diet, Eucommia ulmoides (EU)‐supplemented diet (20 g/kg) and GA‐supplemented diets (200, 400, 600, 800 and 1,000 mg/kg GA) for 75 days. The growth performance and muscle proximate composition showed no difference among groups (> .05). Dietary GA (200–1,000 mg/kg) increased the contents of total collagen and alkaline‐insoluble collagen in skin (p < .05), and high supplementation of GA (600–1,000 mg/kg GA) and EU increased the contents of total collagen, alkaline‐insoluble collagen and total amino acids (p < .05), but reduced the lipid level in muscle (p < .05). In collagen gene expression, EU and 200–1,000 mg/kg GA increased COL1A1 expression in muscle and skin (p < .05), but the expression of COL1A2 was increased only by high supplementation of GA (1,000 mg/kg, or 800–1,000 mg/kg) (p < .05). In conclusion, dietary GA improved the flesh quality of grass carp, and the supplementation level was estimated to be 600 mg/kg diet.  相似文献   

4.
The effects of methionine‐enriched Artemia nauplii on growth, amino acid profiles and activity of absorption enzymes and antioxidant capability of common carp (Cyprinus carpio var. Jian) larvae were investigated in this study. The newly hatched Artemia nauplii enriched with methionine at four levels (0, 400, 800, 1,600 mg/L) for 16 hr was used as live food for common carp larvae for 21 days. The results demonstrated that the level of methionine in nauplii enriched with methionine increased significantly as the level of supplemental methionine rose (p < 0.05). The specific growth rate (SGR) and body length growth rate (BLGR) values in all experimental groups were significantly higher than those in the control group (p < 0.05) in the trial period. With the supplement of methionine, the amino acid profiles vary depending on the type of amino acid and/or the level of methionine applied. Further examination revealed that the activity of absorption enzymes in the 800 and 1,600 mg/L groups were all significantly higher compared to the other two groups (p < 0.05). Similar results on the antioxidant capability of fish larvae were also observed among the treatments. The changes in these physiological factors allowed for the control of the content of supplemental methionine in Artemia nauplii for larvae and potentially the ability to improve the growth performance of common carp larvae.  相似文献   

5.
An 8‐week growth trial was conducted to investigate the effects of dietary Arg levels (7.6, 12.3, 17.9, 22.4 and 28.6 g/kg diet) on growth performance, hepatopancreatic antioxidant capacity, intestinal morphology and growth‐related gene expressions of juvenile grass carp (Ctenopharyngodon idellus). The results showed that SGR in Arg22 and Arg28 groups was lower than in Arg12 and Arg17 groups (p < 0.05). Serum NO content in Arg7 group was lower than other groups. Hepatopancreatic GSH‐Px activity was higher in Arg17 group than in Arg7 group, while MDA content showed the opposite trend. Hepatopancreatic IGF‐1 expression tended to increase with Arg from 7.6 to 22.4 g/kg and then decreased in Arg28 group (p < 0.05), while IGFBP‐1 expression increased with Arg level. Muscle mRNA expressions of TOR and S6K1 showed quadratic trends as dietary Arg level increased, which were higher in Arg17 group than in Arg22 and Arg28 groups (p < 0.05). Higher mRNA expression levels of y+LAT1, y+LAT2 and PepT1, as well as higher villus height and villus width in foregut, were all observed in Arg17 group. The optimal dietary Arg level based on SGR by the quadratic model was 15.3 g/kg diet for juvenile grass carp, corresponding to 54.7 g/kg dietary protein.  相似文献   

6.
The effects of N‐carbamylglutamate (NCG) on growth, intestinal enzyme activities, immunological and antioxidant parameters were evaluated by a 56‐d feeding trial in Pelteobagrus fulvidraco fed diets containing NCG with 0, 250, 500, 1,000 or 2,000 mg/kg, respectively. The results showed that 250 mg/kg of NCG resulted in significantly higher weight gain, intestine fold height, intestine lipase, serum lysozyme, glutathione peroxidase and total antioxidant capacity than control (p < 0.05). However, higher intestine trypsin, arginase, arginine decarboxylase, ornithine decarboxylase, diamine oxidase activities and serum nitric oxide content were observed in 500 mg/kg NCG group compared to control or 2,000 mg/kg (p < 0.05). The survival rate, intestine muscular layer thickness, serum lysozyme and superoxide dismutase activities in 2,000 mg/kg NCG group were significantly lower than those in control and 250 mg/kg group, accompanied by the higher feed conversion ratio in the same group (p < 0.05). Together, dietary NCG level at 250 or 500 mg/kg improved growth, intestinal enzyme activities, immunological and antioxidant abilities, while high NCG level of 2,000 mg/kg had a negative effect. Quadratic regression analysis on weigh growth, diamine oxidase and lysozyme activities indicated that the recommended optimum dietary NCG level was 213.48–314.50 mg/kg of the dry diet.  相似文献   

7.
An 88‐day experiment was conducted in a flowing system to evaluate the effects of dietary vitamin C on growth, body composition, antioxidant and gonad development of on‐growing gibel carp. Triplicate tanks of gibel carp (77.2 ± 0.1 g) were randomly fed with one of seven experimental diets containing l ‐ascorbic acid of 0, 101.1, 188.5, 313.1, 444.1, 582.1 and 747.0 mg/kg, respectively. The results showed that specific growth rate (SGR) and feed efficiency (FE) of fish were not affected by dietary l ‐ascorbic acid. Dietary l ‐ascorbic acid of 444.1 mg/kg diet led to low levels (p < .05) of gonadosomatic index (GSI) and hypothalamic gonadotropin‐releasing hormone (GnRH) in on‐growing fish, as well as the early ovarian stages (Developing stages) compared with fish (Maturing stages) from the other groups. Dietary l ‐ascorbic acid supplementation increased (p < .05) the dorsal muscle collagen content, but did not affect the protein or lipid content of dorsal muscle in gibel carp. Plasma total antioxidant capacity (T‐AOC) and superoxide dismutase (SOD) activity increased (p < .05) and then remained unchanged with the increase in dietary l ‐ascorbic acid levels. Dietary l ‐ascorbic acid of 101.1 mg/kg diet improved (p < .05) plasma lysozyme activity of the fish. Broken‐line regression indicated that dietary l ‐ascorbic acid requirement of 77 g gibel carp was 223.3 or 225.0 mg/kg diet based on plasma T‐AOC or SOD activity, which was a little higher than that based on plasma l ‐ascorbic acid concentration (193.2 mg/kg).  相似文献   

8.
To evaluate the effects of dietary nano‐selenium (Nano‐Se) on antioxidant capacity and hypoxia tolerance of grass carp fed with high‐fat diet, experimental fishes were fed Nano‐Se supplemented diets at doses of 0 (Control), 0.3, 0.6, 0.9 and 1.2 mg/kg for 10 weeks. After feeding trial, a part of the fishes were exposed to hypoxia stress. Results showed that the survival ratio of grass carp significantly increased in 0.6 and 0.9 mg/kg Nano‐Se group, and the content of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) significantly decreased in 0.6–1.2 mg/kg Nano‐Se groups compared with the control group. In addition, dietary Nano‐Se significantly enhanced glutathione peroxidase (GPX) activity and reduced the malondialdehyde (MDA) content in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. Dietary Nano‐Se significantly elevated mRNA expression of GPX1 and catalase (CAT) by promoting the mRNA expression of NF‐E2‐related nuclear factor 2 (Nrf2) in the hepatopancreas. After hypoxia stress, the GPX and superoxide dismutase (SOD) activities were significantly enhanced, and the MDA content and mortality rate consequently decreased in fishes fed diets with 0.3 and 0.6 mg/kg Nano‐Se. In summary, these results suggested that optimal Nano‐Se in diet enhanced the antioxidant capacity and hypoxia tolerance of grass carp.  相似文献   

9.
A 3 × 2 factorial experiment was conducted to investigate the interaction between carbonate alkalinity and dietary α‐ketoglutarate (AKG) levels on the growth performance, antioxidant capacity and ammonia metabolization of Songpu mirror carp (Cyprinus carpio Songpu). Each diet (0%, 1% AKG) was randomly allotted to 0 mmol/L, 15 mmol/L, 30 mmol/L carbonate alkalinity groups with three replicate aquaria. The weight gain rate (WGR) significantly increased in the 1% AKG group and significantly decreased with increasing carbonate alkalinity (< .05). Crude ash was significantly affected by the interaction between carbonate alkalinity and dietary AKG levels and significantly increased in the 1% AKG group (< .05). A significant interaction between carbonate alkalinity and dietary AKG levels on superoxide dismutase (SOD) activities in hepatopancreas was observed (< .05). The increasing carbonate alkalinities significantly decreased SOD activities in the hepatopancreas and foregut, catalase (CAT) activities in the hepatopancreas, foregut, midgut and hindgut and glutathione (GSH) contents in the hepatopancreas and foregut (< .05). Despite AKG addition, the blood ammonia content still increased with increasing carbonate alkalinities. The gene expressions of AQP3, Rhag, Rhcg2 and Na+/K+‐ATPase (NKA) in the gills and glutamine synthase (GS) in the brain were significantly upregulated with increasing carbonate alkalinities (p < .05). In the 1% AKG group, GS gene expression significantly upregulated in the brains, whereas AQP3, Rhag, Rhcg2 and NKA gene expressions significantly downregulated in the gills (p < .05). In summary, the 1% AKG addition can enhance the gene expression of ammonia metabolization and improve the antioxidant capacity of Songpu mirror carp with chronic carbonate alkalinity stress.  相似文献   

10.
This study was conducted to investigate the effects of dietary protease on growth performance, feed utilization, whole‐body proximate composition, nutrient digestibility, intestinal and hepatopancreas structure of juvenile Gibel carp, Carassius auratus gibelio (mean weight 8.08 ± 0.18 g). Six diets were prepared, including a positive control diet (dietary protein 350 g/kg, PC), one negative control diet (dietary protein 33 g/kg, NC) and four protease supplementations diets, which were 75, 150, 300 and 600 mg/kg protease NC diet. After 12 weeks of diet feeding in indoor recycle aquarium tanks, no significant difference (> .05) was found on growth performance between fish fed diet with 75–600 mg/kg protease and the PC group. Compared with the fish fed the NC diet, the specific growth rate of fish fed 300 mg/kg protease increased significantly (< .05), as well as protein efficiency ratios (< .05), while feed conversion was the opposite (< .05). The nutrient digestibility of crude protein and lipid was higher (< .05) in fish fed 150 mg/kg protease diet than the PC diet. Whole‐body proximate composition of fish was not affected (> .05) by the dietary treatment. Serum alkaline phosphatase and albumin were significantly affected by dietary protease (< .05), while the content of total protein, glucose, triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase activities in serum was not affected (> .05). Foregut muscular thickness was thinner (< .05), when the fish fed diets supplementation of protease in 150 or 600 mg/kg diet than the NC diet. Protease activities in hepatopancreas and foregut were higher (< .05), in the fish fed 150 or 300 mg/kg protease diet than the fish fed the PC diet, but those in the mid‐ and hindgut were not significantly affected (> .05) by the dietary treatments. Based on the regression analysis of weight gain rate, the optimal dietary inclusion level of protease was 400 mg/kg in the diet for juvenile Carassius auratus gibelio.  相似文献   

11.
This study was designed to use sucrose as carbon source to investigate the effect of biofloc technology on water quality and feed utilization in the cultivation of gibel carp (Carassius auratus gibelio var. CAS III). Three isolipidic and isoenergetic diets were formulated containing graded levels of dietary protein (257.4, 300.7 and 353.4 g/kg). The control group (P34) was fed with 353.4 g/kg protein diet without biofloc. Three biofloc treatments (P24 + B, P29 + B and P34 + B) were fed with the three diets with daily sucrose supplementation and continuous air inflation. The results found that the sucrose supplementation could generate biofloc and increased biofloc volume (BFV,< 0.05). The concentration of total ammonia nitrogen (TAN), nitrate nitrogen (NO3‐N) and the total phosphorus (TP) of all tanks decreased in biofloc groups, and the total nitrogen (TN) of P24 + B treatment tanks was significantly lower than that of the control group (< 0.05). The growth of P24 + B and P29 + B group was similar with that of control group (> 0.05). Feed conversion ratio (FCR) of P29 + B was lower than P24 + B and P34 + B (< 0.05). Protein retention efficiency (PRE) of P24 + B group was significantly higher than other treatments (< 0.05). Phosphorus retention efficiency (PhRE) of P24 + B group was the highest among all treatments. Compared with the control group, P29 + B group had an improved total antioxidant capacity (T‐AOC), superoxide dismutase (SOD) activity and contained the lowest malondialdehyde level (MDA). The present results indicated that low‐protein diet is more suitable for gibel carp in zero‐water exchange biofloc system compared with high‐protein diet.  相似文献   

12.
A feeding trial was conducted to evaluate the effect of dietary protein hydrolysates from common carp (Cyprinus carpio) by‐products on the antioxidant status of zebrafish (Danio rerio). Common carp by‐product was hydrolysed using Alcalase to a degree of hydrolysis of 15%. The zebrafish were fed for 44 days with four different diets with increasing levels of carp by‐product hydrolysates (CBH0: 0 g/kg; CBH25: 25 g/kg; CBH50: 50 g/kg; CBH100: 100 g/kg). The gills, muscle and brain were dissected at the end of the feeding trial in order to evaluate the total antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (TBARS). Although total antioxidant capacity did not show differences in muscle (p > 0.05), lipid peroxidation was reduced in the muscle of fish fed the CBH50 diet. Brain lipid peroxidation showed a significant reduction (p < 0.05) in all groups when compared with the control diet CBH0. Antioxidant properties of protein hydrolysates indicate their potential as nutraceuticals since (a) a reduction in muscle lipid peroxidation was verified, implying that their use could enhance the quality and shelf life of fish fillets; and (b) a decrease in brain lipid peroxidation was registered, highlighting the potential use of fish protein hydrolysates for the prevention of neurodegenerative diseases.  相似文献   

13.
To investigate the effects of dietary reduced glutathione (GSH) on the growth performance and antioxidant capacity of juvenile Atlantic salmon (Salmo salar), 396 juvenile fish with initial body weight of 143.07 ± 6.56 g were randomly distributed into four groups fed four diets with graded supplementation levels of GSH (0, 100, 200 and 400 mg/kg diet) for 83 days. The results showed that the appropriate GSH supplementation (100 and 200 mg/kg diet) significantly increased the growth performance, activities and gene mRNA expression levels of glutathione peroxidase (GPx) and glutathione transferase (GST), and the content of GSH and total antioxidant capacity (TAOC), whereas it significantly decreased activities and gene mRNA expression levels of superoxide dismutase (SOD) and catalase (CAT), and the content of malondialdehyde (MDA; p < 0.05). However, the excess dietary GSH (400 mg/kg diet) had an adverse effect on the all above indexes. Interestingly, the dietary GSH had the opposite effect on GSH‐related antioxidant enzymes (GPx and GST) and other antioxidant enzymes (SOD and CAT). The results showed that the diet with 200 mg/kg GSH supplementation was optimal for the juvenile Atlantic salmon, which had a measured GSH content of 209.54 mg/kg.  相似文献   

14.
15.
A 115‐day feeding trial and subsequently a 10‐day challenge test with Vibrio parahaemolyticus were conducted to investigate the effects of dietary antimicrobial peptide APSH‐07 on growth performance, immune response, antioxidative status and vibriosis resistance of abalone Haliotis discus hannai (initial body weight: 2.06 ± 0.01 g; initial shell length: 25.42 ± 0.18 mm). Four artificial diets were designed with 0 (artificial diet control), 7.5, 15.0 and 22.5 mg/kg of APSH‐07, respectively. The brown alga Laminaria japonica was used as the live food control. Results showed that the specific growth rates of abalone in the groups with 7.5 and 15.0 mg/kg dietary APSH‐07 were significantly higher than those in the controls (p < .05). The total haemocyte counts and respiratory burst activity in haemolymph of abalone in the group with 7.5 mg/kg of dietary APSH‐07 were significantly higher than those in the groups with 0 and 22.5 mg/kg of dietary APSH‐07 (p < .05). The gene expression levels of Mn‐superoxide dismutase and thioredoxin peroxidase 2, and the activities of glutathione peroxidase in the group with 7.5 mg/kg of dietary APSH‐07 were significantly higher than those in the other groups (p < .05). Cumulative mortality of abalone after the challenge test was significantly decreased in the group with 7.5 mg/kg of dietary APSH‐07 supplementation. Supplementation of 22.5 mg/kg dietary APSH‐07 significantly increased the cumulative mortality. In conclusion, 7.5 mg/kg of dietary APSH‐07 supplementation had the better growth performance, higher antioxidation, immune and disease resistance capacity of abalone. Excessive supplementation of dietary antimicrobial peptide APSH‐07 (22.5 mg/kg) had significantly negative effects. Further studies are needed to determine the optimal level of dietary APSH‐07 supplementation for abalone.  相似文献   

16.
Firstly, a linoleic acid emulsion and fish hepatopancreas homogenate were incubated with ethoxyquin and the extracts of Angelica sinensis. The results demonstrated that ethoxyquin showed the strongest protective effects against lipid oxidation of all of the examined compounds (p < 0.05). However, ethyl acetate extract of Angelica sinensis at high concentrations showed a stronger effect on lipid oxidation than that of ethoxyquin (p < 0.05). Next, seven experimental diets that contained 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 g/kg of ethyl acetate extract of Angelica sinensis were fed to seven groups of carp (Cyprinus carpio var. Jian) respectively. After 60 days, carp were exposed to 2.4 mg trichlorfon/L in water for 4 days. The results displayed that trichlorfon exposure increased the contents of malonaldehyde and protein carbonyl in digestive organs and the activities of glutamate‐oxaloacetate and glutamate‐pyruvate transaminase in plasma, and decreased feed intake, the level of reduced glutathione, and the activities of trypsin, chymotrypsin, lipase, alpha‐amylase, Na+,K+‐ATPase, alkaline phosphatase, antisuperoxide anion, antihydroxyl radical, superoxide dismutase, glutathione reductase, and glutathione S‐transferase in digestive organs of carp (p < 0.05). Moreover, the dietary ethyl acetate extract of Angelica sinensis prevented the decrease in the above parameters in carp treated with trichlorfon (p < 0.05). These results revealed that the dietary ethyl acetate extract of Angelica sinensis could quench the trichlorfon‐induced structural and functional damage by improving the antioxidative capacity of the digestive organs of fish. Therefore, the extract of Angelica sinensis could be used as an inhibitor of trichlorfon stress in fish.  相似文献   

17.
Gamma aminobutyric acid (GABA) is one of the inhibitory neurotransmitters that may have the ability to regulate the appetite. This study aimed to evaluate the effects of dietary GABA, as a feed additive, on growth performance and antioxidant status of juvenile grass carp. Five isonitrogenous and isoenergetic experimental diets with graded levels of GABA (0, 20, 50, 100 and 200 mg/kg) were fed to grass carp juveniles (mean weight: 2.0 g) for 8 wk. The results showed that the specific growth rate (SGR) increased significantly with dietary GABA level up to the 100 mg/kg diet, and then decreased in the 200 mg/kg group (P < 0.05). The difference in SGR value between the 50 and 100 mg/kg groups was not statistically significant (P > 0.05). The survival rate was not significantly affected by dietary GABA level (P > 0.05). No significant difference was observed in the whole body composition among treatments (P > 0.05). The hepatopancreatic glutathione peroxidase (GPx) activity increased significantly (P < 0.05) with the GABA level, peaked in the group with GABA 100 mg/kg, and then decreased. The hepatopancreatic superoxide dismutase and total antioxidant capacity activities showed the same trend as GPx. Inversely, the hepatopancreatic malondialdehyde content decreased first and then increased with the dietary GABA level (P < 0.05). No significant differences were observed in the gene expression of neuropeptide Y (NPY), cholecystokinin, leptin, and ghrelin in the hepatopancreas among groups. However, the NPY and ghrelin mRNA expression levels in the brain increased significantly with the GABA level, peaked in the groups of 50 mg/kg, and then showed a decreasing trend. On the basis of quadratic regression analysis of SGR, the optimum content of dietary GABA in juvenile grass carp is suggested to be a 87.5 mg/kg diet.  相似文献   

18.
The current study was conducted to evaluate the effect of dietary soy isoflavones (SI) on growth performance, antioxidant status, immune response and resistance to Aeromonas hydrophila in juvenile grass carp (Ctenopharyngodon idella). Six diets were formulated to contain 0 (control), 10, 50, 100, 500 or 1,000 mg SI per kg feed. Each diet was randomly allotted to triplicate net cages, and each net cage was stocked with 30 fish. The fish were fed one of the experimental diets to satiation twice per day for 60 days. The results showed that the WGR and DGC of the 500 mg/kg SI‐supplemented group were significantly higher than those of the non‐SI‐supplemented group (p < .05). Serum LZM and IgM activities in the SI‐supplemented groups were improved compared to the control group. SOD and GSH‐Px levels of fish fed the diet containing 500 mg/kg SI were significantly enhanced compared to those of fish fed the control diet (p < .05). Additionally, serum CAT, GSH‐Px and AKP activities in 50, 100 and 500 mg/kg SI‐supplemented groups were significantly higher than that in the control group (p < .05). The expression of most immune‐related genes (including IFN‐γ2, TNF‐α, M‐CSF2, IL‐6, IL‐12p40 and IL‐4) was significantly affected by dietary supplementation of SI. The group fed with 500 mg/kg SI had the highest 7‐day cumulative survival rate after challenge test (p < .05). The current results revealed that dietary inclusion of SI could improve the immune response and resistance against A. hydrophila and the supplementation level is suggested to be 500 mg/kg diet.  相似文献   

19.
In order to investigate the effects of dietary fish oil replacement, the turtles (Mauremys sinensis) were fed four experimental diets for 10 months: FO (100% fish oil), FSO (70% fish oil and 30% soybean oil), SFO (30% fish oil and 70% soybean oil) and SO (100% soybean oil), sampled at pre‐vitellogenesis, vitellogenesis and post‐vitellogenesis. The results showed that plasma gonadotropin‐releasing hormone (GnRH) levels were the highest at pre‐vitellogenesis, which promoted the secretion of gonadotropin and sex steroids. Therefore, plasma luteinizing hormone (LH) and estrogen (E2) levels were significantly increased at post‐vitellogenesis (< 0.05), while follicle‐stimulating hormone (FSH) levels increased at vitellogenesis (< 0.05). The FO and FSO groups had significantly higher GnRH and E2 levels than the other two groups (< 0.05). In addition, plasma vitellogenin (Vtg) levels significantly increased at vitellogenesis and post‐vitellogenesis (< 0.05), which were significantly higher in the groups of FO and FSO than SO (< 0.05). Moreover, the expression levels of hepatic estrogen receptor α (Erα) mRNA were significantly increased at vitellogenesis and post‐vitellogenesis while ovarian Cyp19α1α mRNA were significantly increased at post‐vitellogenesis (< 0.05), and both were the lowest in SO. Taken together, the replacement of fish oil with 66.7% soybean oil is feasible.  相似文献   

20.
l ‐carnitine (LC) is required for transporting long‐chain fatty acids into the mitochondria, where β‐oxidation takes place, and it works as an antioxidant molecule against reactive oxygen species. This study evaluated the effects of LC on the growth and antioxidant function of Amur minnow (Phoxinus lagowskii Dybowskii). Five isonitrogenous (380.4 g/kg) and isoenergetic (17.63 MJ/kg) diets were supplemented with five LC levels: control level (0 mg/kg) and treatment levels (50, 400, 750, or 1,100 mg/kg) were fed to fish (18.19 ± 0.56 g) for 120 days. The results showed that the growth performance of fish fed a diet containing 400 mg/kg of LC was significantly higher than that of the control and those fed other LC level treatments. Similarly, the 400 mg/kg treatment had the best feed efficiency. Further, the levels of total antioxidant capacity and total glutathione in the serum and hepatopancreas of fish fed a diet containing 750 mg/kg of LC were significantly increased; however, malondialdehyde levels were significantly reduced compared to those of the control group. The activities of antioxidant enzymes of 750 mg/kg treatments in the serum and hepatopancreas were significantly higher than those of the control group, including total superoxide dismutase, catalase, glutathione peroxidase and gamma‐glutamyl‐cysteine synthetase. Finally, 750 mg/kg treatment significantly upregulated the mRNA relative expression of antioxidant enzymes and nuclear factor erythroid‐2‐related factor 2 and inhibited the mRNA level of kelch‐like ECH‐associated protein 1 in the hepatopancreas. In conclusion, the dietary LC level of 400–750 mg/kg could improve the growth performance, feed utilization and antioxidant defense system of Amur minnow under the culture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号