首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Macrobrachium rosenbergii, known as the giant freshwater prawn or Malaysian prawn, is the sixth largest aquaculture species in Asia. Knowledge of genetic diversity of M. rosenbergii is important to support management and conservation programmes, which will subsequently help in sustainable production of this economically important species. This study aimed to analyse the genetic diversity and population structure of five M. rosenbergii populations using 11 microsatellite loci. In analysing 240 samples, the number of alleles, observed heterozygosity (HO) and expected heterozygosity (HE) ranged from 3 to 20, from 0.250 to 0.978 and from 0.556 to 0.944 respectively. The five stocks of M. rosenbergii displayed high level of genetic diversity. Both the FST and amova analyses showed that there was significant genetic differentiation among all populations. The UPGMA dendrogram based on Nei's genetic distance matrix revealed that the Narmada and Mahi populations were in one cluster and Mahanadi and Subarnarekha populations in another single major branch, whereas the Kerala population clearly showed a separate cluster. This information on genetic variation will be useful for genetic improvement and conservation of Indian populations of giant freshwater prawn M. rosenbergii.  相似文献   

2.
鞍带石斑鱼作为最大型的石斑鱼,生长速度快,有明显的生长优势,在石斑鱼的产业发展中起到举足轻重的作用。为了解人工养殖和选育活动对鞍带石斑鱼遗传多样性的影响,本文采用微卫星分子标记技术,对广东、海南和福建三个省份共五个代表性采集点的鞍带石斑鱼繁育群体的遗传变异信息进行了研究。群体内遗传多样性分析显示,5个群体等位基因(Na)的平均数目为7.326(6.375-8.380),观测杂合度(Ho)平均值为0.711(0.625-0.775),期望杂合度(He)平均值为0.705(0.684-0.734),多态信息含量(PIC)平均值为0.659(0.633-0.693)。其中,来自福建厦门翔安区的鞍带石斑鱼繁育群体遗传多样性最高。分子方差分析(AMOVA)结果显示,5.36%的遗传变异来自群体间,95.45%来自所有个体间。群体间遗传分化指数(Fst)及遗传距离结果显示,GC和CP群体聚为一支,再与AT群体聚为一支,再与XA群体距为一支,HL群体为独立一支。通过系统进化树分析显示,鞍带石斑鱼繁育群体交叉在一起,没有形成明显的地理格局分布。总而言之,这三省五地的鞍带石斑鱼繁育群体遗传多样性较高,没有明显的驯化迹象。整体研究表明,鞍带石斑鱼繁育群体仍具有较高的遗传多样性,品种受亲本近交影响而出现衰退的可能性不高,人工繁育技术的不完善及养殖管理不规范可能是导致品种病害频发及养殖成活率低的原因。本研究为鞍带石斑鱼种质评价和人工选育提供理论依据。  相似文献   

3.
为从遗传多样性的角度了解团头鲂(Megalobrama amblycephala)3个选育群体的遗传潜力,该研究以团头鲂"浦江1号"选育奠基群体(F_0)为对照组,采用14个多态性转录组微卫星标记评估了团头鲂3个选育群体的遗传多样性,分析其遗传潜力。结果显示,3个选育群体平均每个位点的等位基因数(A)为7.928 6~8.785 7,有效等位基因数(A_E)为4.409 4~4.878 4,观察杂合度(H_O)为0.491 1~0.574 4,期望杂合度(HE)为0.741 3~0.751 8,多态信息含量(PIC)为0.691 2~0.705 2,近交系数(FIS)为0.229~0.352。3个选育群体的遗传多样性水平(AE、HE)均高于F0群体,但不存在显著差异(P0.05)。3个选育群体的有效群体大小(N_e)为11.0~29.3,在近期可能经历过遗传瓶颈。3个选育群体间D_A、D_(SW)遗传距离分别为0.175 4~0.358 8、0.804 7~1.054 4。该结果表明,3个选育群体的遗传多样性较高,遗传潜力较大,但因有效群体数量较少和瓶颈效应的影响,存在杂合度下降和近交衰退的风险,今后需采取科学措施来保护选育群体的遗传潜力。  相似文献   

4.
开放核心育种体系可增加核心群体的选择强度,进而增加育种目标性状的遗传进展。本研究以罗氏沼虾(Macrobrachium rosenbergii)为研究对象,向闭锁核心群(closed nucleus population,NP)内引入扩繁群(multiplier population, MP)个体,构建两个杂交群体(正交群体NP/MP,反交群体MP/NP),并以闭锁核心群(NP/NP)为对照,应用线性混合效应模型(linear mixed effects model, LME)和广义线性混合模型(generalized linear mixed model, GLMM)对不同群体收获体重和存活率的估计边际均值进行比较,评估在虾类选择育种中构建开放核心育种体系的可行性。结果显示:(1) NP/NP、MP/NP和NP/MP群体的收获体重估计边际均值分别为45.83 g、49.57 g和46.62 g;与NP/NP群体相比, MP/NP和NP/MP群体分别提高了8.16%和1.72%。(2) NP/NP、MP/NP和NP/MP群体的存活率估计边际均值分别为72.92%、68.04%和66.55%;与NP/NP群体相比,MP/NP和NP/MP群体分别降低了6.69%和8.74%。综上所述,在罗氏沼虾核心群中引入扩繁群个体,构建开放核心育种群体,可以有效地增加收获体重的遗传进展;同时在制定选择指数时,应加大存活性状的权重,选择生长和存活性能均优良的家系生产扩繁群体,导入闭锁核心育种群,构建生长和存活性能均优良的开放核心育种群。  相似文献   

5.
Abstract Murray cod, Maccullochella peelii (Mitchell) is an iconic Australian species endemic to the Murray‐Darling Basin (MDB) of inland south‐eastern Australia. Murray cod has been a valuable food source and supported a large commercial fishery throughout much of the 20th century. Over‐fishing and habitat destruction have resulted in significant declines in Murray cod populations throughout much of its range. Since the early 1980s, large numbers of Murray cod have been stocked into waterways to support both recreational fishing and conservation efforts. In this study, the likely impacts of past and current stocking practices on genetic diversity of Murray cod were modelled and new strategies to maximise genetic diversity in stocked populations are explored. The results suggest that a large, well‐managed breeding and stocking programme could help maintain genetic diversity of Murray cod across the MDB. In catchments within the MDB where the effective population size is very small, a well‐designed stocking programme, following strict guidelines for numbers of families reared and number of individuals maintained per family, could increase genetic diversity in a few generations.  相似文献   

6.
The Japanese population of the cyprinid minnow Aphyocypris chinensis is nearing extinction in the wild. The genetic diversity of three microsatellite loci in five captive populations was investigated, and an effective breeding strategy to reduce inbreeding from pairwise relatedness (R xy ) between each captive line is discussed. The average number of alleles ranged 2.33–4.67 and the average heterozygosity ranged 0.283–0.602. The pairwise relatedness observed in most combinations showed a significant decrease between the populations. It is suggested that exchange of individuals between different breeding lines should effectively stop inbreeding. Studies show that the effective population size (N e ) estimated from the number of parental individuals was 8.54 in one captive population, which is insufficient to maintain genetic diversity. It is recommended that more parental individuals should be used, and to exchange fish in a rotating mating mode between institutions participating in captive breeding of A. chinensis.  相似文献   

7.
One of the challenges for the culture of any species is to control the loss of genetic variability, which may result in a decrease in the quality of commercially important traits. The goal of this study is to assess the genetic diversity of a hatchery population of the Pacific abalone ( Haliotis discus hannai ) from the Center for Abalone Production of the Universidad Católica del Norte (CAP-UCN) that is maintained under a breeding programme. We used six polymorphic microsatellite markers within the cultivated population. The loci Awb033 and Awb079 had the highest number of alleles (11 and 10 respectively) and the loci Awb022 and Awb026 the lowest (two and four respectively). The mean number of alleles per locus was 6.83. The average observed and expected heterozygosities were 0.71 and 0.70, respectively, and the average F IS ( f ) index was −0.023. We compared the population genetic parameters of the CAP-UCN population with previously published data of wild and hatchery populations of the same species. Results indicate lower genetic diversity estimated as allelic richness in the introduced population with a loss of 11–58% alleles per locus. Despite the high allelic loss, the estimated inbreeding coefficient suggests that the breeding programme carried out in the CAP-UCN has controlled and maintained heterozygosity levels successfully. A temporal study is necessary to determine whether the genetic diversity loss detected was caused during the initial introduction of breeders or to the breeding programme actually implemented.  相似文献   

8.
水产动物多性状复合育种技术已发展成为国内水产选择育种的重要技术体系。在限定的近交水平下,如何选种和配种实现遗传进展最大化是当前该体系亟待解决的一个突出问题。在动植物选择育种中,最佳遗传贡献理论(Optimum Contribution,OC)已成为平衡育种核心群长期遗传进展与近交水平的有效工具。本文论述了OC理论的提出背景和发展过程、不同优化算法的特点和该理论在动植物选择育种中的应用进展,并进一步综述了基于基因组信息的OC理论研究新进展。遗传贡献目标函数的优化算法主要包括拉格朗日乘数法、半正定规划法和差分进化算法等。基于拉格朗日乘数法,执行OC选择10代后获得的遗传进展要比最佳线性无偏预测法(Best Linear Unbiased Prediction,BLUP)育种值直接选择高21%-60%。针对水产动物等高繁殖力大群体,育种学家进一步改进了算法,利用候选亲本父母本群体的加性遗传相关矩阵来计算候选亲本群体的加性遗传相关矩阵和逆矩阵,降低了逆矩阵的维数,提高了最佳遗传贡献值的计算效率。但是拉格朗日乘数法并不能保证求解出的遗传贡献值为全局最大值,而半正定规划方法利用内点算法可以获得候选亲本的最佳遗传贡献值,与前者相比遗传进展可进一步提高1.5%-9%。差分进化算法可将遗传进展、遗传多样性、后代近交、场间遗传联系、多阶段选择、分子标记利用和成本等多种因素纳入目标函数进行优化,同时完成个体选择和交配方案制定两个关键任务。复合系谱和基因组信息,在限定的近交水平下,可以获得更为准确的遗传贡献值,遗传进展可进一步提高。OC选择已经应用在畜牧、林木育种研究中,育种群体的近交水平得到了有效控制,与BLUP直接选择相比,目标性状的遗传进展进一步提高(17%-30%)。针对水产动物多性状复合育种技术体系的特点,本文分析了OC理论应用的紧迫性和可行性,提出了亟待解决的关键技术问题和解决方案,为下一步在水产动物选择育种中应用OC理论提供借鉴和指导。  相似文献   

9.
Seven high polymorphic microsatellite loci were used to determine the pedigrees in a mass spawning of Pacific oyster, Crassostrea gigas, and to estimate the genetic variability between broodstock and offspring. Parental assignment was performed on a total of 155 individuals, including 141 offspring, 8 candidate mothers, and 6 candidate fathers. The assignment results of real offspring were generally in agreement with simulation with a success rate over 99% using only six of these loci. The allelic diversity and observed heterozygosity (Ho) exhibited similarity between parents and offspring populations, but the expected heterozygosity (He) had a significant decrease in offspring. Although all the males and females contributed to the next generation, the variances of reproductive success and unequal sex ratio resulted in a decline in effective population size (Ne = 11.42). The inbreeding rate of this small‐scale, mass spawning population was estimated at approximately 16.5% per generation. This gave us an insight that when designing breeding programs based on mass spawning for future oyster cultivation generations, the higher inbreeding and lower effective population size should be considered.  相似文献   

10.
脊尾白虾是我国沿海地区池塘养殖重要品种,但目前尚未实现全人工繁育,严重制约了产业进一步发展。选取野生脊尾白虾作为亲虾,经过越冬培育、促熟交尾、幼体孵化培育、仔虾选育等手段,进行了脊尾白虾全人工繁育技术研究。试验结果显示,在盐度31.3、水温18.1~26.2℃、pH 8.1条件下,室内越冬脊尾白虾亲虾可成功培养至性腺成熟,并交尾抱卵,平均抱卵率达70%,平均孵化率为61.02%。幼体最佳培育密度20尾/L,仔虾适宜养殖密度0.13~0.53尾/L,培育至2cm时存活率可达80%,继续培育3个月后发育至性成熟。一年可繁殖2~3代。在此基础上建立了脊尾白虾近交家系,现已培育至第6代,各家系繁殖力、生长速度和存活率均未出现近交衰退现象。本研究初步解决了脊尾白虾室内全人工繁育技术,并为试验动物培育奠定了良好的技术基础。  相似文献   

11.
The genetic response and economic benefit from alternative breeding programme designs for blacklip and greenlip abalone (Haliotis rubra and Haliotis laevigata, respectively) were evaluated using a computer simulation model. Two selection criteria were investigated, one used family breeding values for liability to disease challenge test infection and the other used a direct selection of the best performing individuals across families for growth rate. Five scales of breeding programme were tested and the model predicted that if growth rate is the only selection criterion, breeding programmes of a scale using 150 families of each species each generation would result in 12–13% genetic improvement in initial generations and have the greatest beneficial economic impact on the Australian abalone industry of the options tested. The model predicts an average discounted benefit–cost ratio of 48:1, total added discounted benefit of AU$4.90 for each kilogram of abalone produced and nominal economic effect on operating income of over AU$16 million per year after 10 years. If disease resistance is the only selective breeding criterion, 100 families of each species would result in the highest benefit–cost ratio of the options tested, although some genetic gain would need to be sacrificed to reduce inbreeding to acceptable levels in this scenario. A strategy for a stand‐alone abalone selective breeding cooperative was also modelled. For a farm of current tank area yielding 100 t year?1, participation is expected to yield over AUThe genetic response and economic benefit from alternative breeding programme designs for blacklip and greenlip abalone (Haliotis rubra and Haliotis laevigata, respectively) were evaluated using a computer simulation model. Two selection criteria were investigated, one used family breeding values for liability to disease challenge test infection and the other used a direct selection of the best performing individuals across families for growth rate. Five scales of breeding programme were tested and the model predicted that if growth rate is the only selection criterion, breeding programmes of a scale using 150 families of each species each generation would result in 12–13% genetic improvement in initial generations and have the greatest beneficial economic impact on the Australian abalone industry of the options tested. The model predicts an average discounted benefit–cost ratio of 48:1, total added discounted benefit of AU$4.90 for each kilogram of abalone produced and nominal economic effect on operating income of over AU$16 million per year after 10 years. If disease resistance is the only selective breeding criterion, 100 families of each species would result in the highest benefit–cost ratio of the options tested, although some genetic gain would need to be sacrificed to reduce inbreeding to acceptable levels in this scenario. A strategy for a stand‐alone abalone selective breeding cooperative was also modelled. For a farm of current tank area yielding 100 t year?1, participation is expected to yield over AU$0.7 million in discounted total added production value and annual discounted returns of over AU$0.4 million per annum by year 10.  相似文献   

12.
本文用26个扩增效果好的微卫星分子标记分析了镜鲤(Cyprinus carpio L.)养殖亲本群体的遗传结构,指导其群体选育。本研究共检测到153个等位基因,片段大小为108~400 bp,平均等位基因数(A)5.8846个,平均有效等位基因数(Ne)2.8625个,平均观察杂合度(Ho)0.5063,平均期望杂合度(He)0.5602,平均多态信息含量(PIC)0.5292,表明该繁育群体处于较高的遗传多样性水平。用χ2检验和遗传偏离指数估计Hardy-Weinberg平衡,表明群体处于平衡状态,但在多个位点表现出杂合子缺失严重,显示出人工选择的痕迹。用PHYLIP3.6软件绘制基于Nei氏标准遗传距离的UPGMA聚类图,依据亲本个体间的遗传差异,以避免近亲交配为原则,建立最佳亲本配组体系,繁育获得2个选育群体,以常规群体繁育子代群体作为对照组,对子代群体的遗传结构及数量性状分析显示,选育群体保持了较高的遗传多样性水平,群体平均期望杂合度在0.5414~0.5449之间,其生长速度较对照群体快14.81%~63.71%。连续2年的生长实验证实,微卫星标记指导群体选育技术在保持群体的遗传多样性水平,避免近交衰退,快速建立优良种群方面具有一定的优势。  相似文献   

13.
利用8个微卫星标记对引进的SPF凡纳滨对虾G0和两个养殖群体(G1,G2)进行遗传多样性分析。8个座位共获得64个等位基因,位点的等位基因数在5~l3之间。多态信息含量PIC在0.405 2~0.869 3之间,其中有6个位点为高度多态位点,适合于多态性分析。8个座位丢失的和新产生的等位基因共30个,占总数的47%。3个群体的平均观测杂合度分别为0.193 8、0.196 1、0.232 5,说明3个群体的遗传多样性较低。对近交系数Fis分析显示3个群体中存在近交,通过对哈迪温伯格平衡检验,显示所有座位均显著偏离平衡,存在杂合子缺失。通过配对Fst和Ne i遗传距离分析,显示3个群体之间有明显的遗传分化,说明种群结构发生了明显的遗传变异,变异可能来自于突变、随机漂变和选择的共同作用。实验结果能够很好地解释经过若干群体选育后,子代群体发生种质退化的现状,由此建议综合采用遗传育种的方法从引进的亲虾中筛选出性状优良稳定的仔虾作为虾苗。  相似文献   

14.
微卫星分子标记指导镜鲤群体选育   总被引:2,自引:0,他引:2  
本文用26个扩增效果好的微卫星分子标记分析了镜鲤(Cyprinus carpio L.)养殖亲本群体的遗传结构,指导其群体选育。本研究共检测到153个等位基因,片段大小为108~400 bp,平均等位基因数(A)5.8846个,平均有效等位基因数(Ne)2.8625个,平均观察杂合度(Ho)0.5063,平均期望杂合度...  相似文献   

15.
近交及其对水产养殖的影响   总被引:7,自引:3,他引:7  
马大勇 《水产学报》2005,29(6):849-856
因大多数野生物种的捕捞已接近甚至超过了可开发的限度,因此必须大量增加水产品的养殖以满足人们对水产品的需要。目前,许多水产养殖种类的苗种来源于野生亲体或野生种苗,但是当野生种群被过度捕捞或数量大量减少时,越来越多的苗种将来源于人工蓄养的亲体群体。  相似文献   

16.
For the first generation of a selective breeding programme, it is important to minimize the possibility of inbreeding. This mostly occurs by mating between closely related individuals, while proper mating can provide an opportunity to establish the base families with wide genetic variation from which selection for subsequent generations can be more effective. Genotyping with microsatellite‐based DNA markers can help us determine the genetic distances between the base populations. The genetic markers further facilitate the identification of the correct parents of the offspring (parentage assignments) reared together with many other families after hatching. We established a genetic analysis system with microsatellite DNA markers and analysed the genetic distances of three farmed stocks and a group of fish collected from wild populations using eight microsatellite markers. The averaged heterozygosity of the farming stocks was 0.826 and that of the wild population was 0.868. The hatchery strains had an average of 8.6 alleles per marker, which was less than a wild population that carried an average of 14.3 alleles per marker. Significant Hardy–Weinberg disequilibrium (HWDE) was observed in two farming stocks (P<0.05). Despite relatively low inbreeding coefficiency of the hatchery populations, the frequency of a few alleles was highly represented over others. It suggests that the hatchery stocks to some extent have experienced inbreeding or they originated from closely related individuals. We will develop a selective program using the DNA markers and will widen the usage of the DNA‐based genetic analysis system to other fish species.  相似文献   

17.
A selective breeding program was established to improve the growth and survival of the cultured giant freshwater prawn Macrobrachium rosenbergii. The response to selection was estimated for the survival of M. rosenbergii using a fully pedigreed synthetic population formed by three introduced strains. The data included 122,761 progeny from 437 sires and 723 dams in seven generations with a nested mating structure. The genetic parameters and estimated breeding values (EBVs) were estimated using a generalized linear mixed model with the probit link function. The realized response was estimated from the difference in the marginal means of survival for the selection and control populations, while the predicted response was obtained from the difference in the mean retransformed survival rate based on the survival EBVs between generations. The realized genetic gain in survival from the G1 to G6 generation ranged from ?1.24 to 2.72 %. The accumulated realized genetic gain (5.02 %) expressed as a percentage was 8.46 %. Across the generations, high heritability (0.401 ± 0.020, Set 1) was obtained when using the model without the c effect and was significantly different from zero (P < 0.05). However, the low heritability and common environment (0.013 ± 0.011 and 0.088 ± 0.007, Set 2) were estimated using the model that included the c effect. The accumulated predicted gains (6.29 and 0.61 %, respectively) from the Set 1 and Set 2 parameters over the five generations of selection expressed as proportions were 9.08 and 0.87 %, respectively. The low genetic gain for survival is most likely caused by a low relative weight in the selection index and reduced genetic variation because of consecutive between-family selection.  相似文献   

18.
Genetic diversities of five domestic and five wild populations of the freshwater prawn, Macrobrachium nipponense, in Jiangsu Province, China, were assessed by amplified fragment length polymorphism analysis. A total of 267 unambiguous polymorphic bands were detected from 300 individuals. The percentage of polymorphic bands varied from 33.64 to 55.14% in the 10 populations. The Nei genetic diversities of the wild populations and their domestic counterparts after several generations were 0.185 ± 0.024 and 0.164 ± 0.013, respectively, showing a decrease in genetic diversity in domestic populations. The largest genetic differentiation exists among the populations from different geographical locations, whereas there was less differentiation between the wild and domestic population in the same site. The cultured population in the north of Jiangsu Province where the large individuals of the prawns were harvested twice a year in spring and autumn for 4 yr almost had no change of genetic diversity (P > 0.05); whereas the cultured population in the south of Jiangsu where the large individuals were harvested all the year had a significantly reduced genetic diversity (P < 0.05). Therefore, we deduced that the aquaculture model in the north of Jiangsu should be better than that in the south. The results may be helpful to genetic enhancement and conservation programs of this species.  相似文献   

19.
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India‐wild) and seven cultured (Hawaii‐1, Hawaii‐2, India‐cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India‐cultured populations. Significant deficiency in heterozygotes was detected in the India‐cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.  相似文献   

20.
The Mekong giant catfish Pangasianodon gigas is endemic to the Mekong River and is a critically endangered species. The genotypes of the microsatellite DNA (msDNA) and mitochondrial DNA (mtDNA) markers (right domain of the control region) were detected to evaluate the present status of genetic divergence of this species from the Mekong River in Thailand and Cambodia. The observed and expected heterozygosity values of Mekong giant catfish in Thailand and Cambodia were relatively low in comparison with those of other nonendangered freshwater fish species. These two populations from Thailand and Cambodia showed similar levels of genetic diversity, as evaluated by the 384 nucleotides of the mtDNA control region with 13 haplotypes. The pairwise F ST value between the two populations based on the genotype frequencies of msDNA and mtDNA markers suggested a close genetic relationship between the populations in Thailand and Cambodia. The results of this study support the conclusion that the Mekong giant catfish is critically endangered. Care should be taken to sustain the genetic diversity of this species, as the level of genetic variability has already decreased in the wild population. This species is a target species for an ongoing stock enhancement program in the Mekong River in Thailand. It is proposed to apply these markers for proper broodstock management, such as for minimal kinship selective breeding in the hatchery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号