首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中  相似文献   

2.
利用15N标记技术,比较了附着藻类对太湖3种氮源(尿素、NH+4和NO-3)的吸收能力。附着藻类对尿素的吸收速率为1.93~5.52μmol/(g·h),对NH+4的吸收速率为0.89~7.67μmol/(g·h),而对NO-3的吸收速率为0.09~0.35μmol/(g·h)。各氮源的贫化百分比在0.18%~9.03%。在浓度为20和50μmol/L时,尿素的贫化值分别为8.41%和8.14%,与NH+4的贫化值相当(分别为9.03%和7.01%);NO-3的贫化值在各浓度下都低于0.29%。附着藻类对每种氮源的吸收速率在3种氮源吸收速率总和中的相对比重:尿素平均为47.9%,NH+4平均为49.6%,NO-3平均为2.5%。根据Vmax与Ks比值,附着藻类对3种氮源的吸收亲和力大小顺序为:尿素NH+4NO-3。研究表明,尿素是除NH+4外附着藻类生长可利用的又一重要氮源。  相似文献   

3.
利用15N标记技术,比较了附着藻类对太湖3种氮源(尿素、NH4+和NO3-)的吸收能力。附着藻类对尿素的吸收速率为1.93~5.52μmol/(g•h),对NH4+的吸收速率为0.89~7.67μmol/(g•h),而对NO3-的吸收速率为0.09~0.35μmol/(g•h)。各氮源的贫化百分比在0.18 %~9.03 %。在浓度为20和50μmol/L时,尿素的贫化值分别为8.41 %和8.14 %,与NH4+的贫化值相当(分别为9.03 %和 7.01 %);NO3-的贫化值在各浓度下都低于0.29 %。附着藻类对每种氮源的吸收速率在3种氮源吸收速率总和中的相对比重:尿素平均为47.9 %,NH4+平均为49.6 %,NO3-平均为2.5 %。根据Vmax与Ks比值,附着藻类对3种氮源的吸收亲和力大小顺序为:尿素>NH4+>NO3-。研究表明,尿素是除NH4+外附着藻类生长可利用的又一重要氮源。  相似文献   

4.
波吉卵囊藻对养殖水体溶解态氮吸收规律的研究   总被引:1,自引:0,他引:1  
利用15N稳定同位素标记物,研究在不同盐度下波吉卵囊藻(Oocystis borgei)对溶解态氮的吸收速率和选择性。结果表明:盐度对波吉卵囊藻氮吸收速率影响显著(P<0.05)。当盐度为15时,波吉卵囊藻对氨氮(NH4+-N)、亚硝酸盐氮(NO2--N)、硝酸盐氮(NO3--N)等均有较大的吸收速率,分别为1.69、0.112、0.028μgN/(g.h);盐度为30时,对尿素氮(Urea-N)有较大的吸收速率,为0.074μg N/(g.h)。不同盐度下,波吉卵囊藻对4种溶解性氮的选择性吸收的先后顺序为:氨氮>亚硝酸盐氮>尿素氮>硝酸盐氮。因此,可通过在对虾养殖环境中接种波吉卵囊藻,以吸收水体中过高浓度的氨氮和亚硝酸盐氮,改善虾池养殖水质,促进健康生态养殖。  相似文献   

5.
温度、盐度和光照强度对鼠尾藻氮、磷吸收的影响   总被引:9,自引:0,他引:9  
在实验室条件下,研究了不同的温度和盐度组合,温度和光照强度组合对鼠尾藻(Sargassum thunbergii)氮、磷吸收速率的影响.结果表明,上述3个环境因子对鼠尾藻氮、磷吸收速率均有显著影响.其中,温度和盐度对鼠尾藻氮、磷吸收速率有极显著影响(P<0.01),二者交互作用也极显著(P<0.01).在盐度20、温度25℃条件下和盐度30、温度30℃条件下,鼠尾藻对氮有较高吸收速率,分别为11.26μmol/[g(dw)·h]和11.01 μmol/[g(dw)·h];在盐度40、温度15~30℃范围内对磷的吸收速率较大,达到1.5μmol/[g(dw)·h]以上.温度和光照对鼠尾藻氮、磷吸收速率均有极显著影响(P<0.01),二者交互作用极显著(P<0.01).在温度15℃和光照强度140~180μE/(m2·s)以及温度20~25℃和光照强度60~100 μE/(m2·s)条件下,鼠尾藻对氮有较高吸收速率,均在9.60 μmol/[g(dw)·h]以上;在温度25℃和光照强度60μE(m2·s)条件下,鼠尾藻对磷的吸收速率达到最大,为1.30 μmol/[g(dw)·h].本研究结果表明,鼠尾藻总体上对水体中的氮、磷均具有较高的吸收速率,且能较好地同时吸收NH4+-N和NO3--N,显示了它对海水环境中营养盐具有较强的吸收能力.  相似文献   

6.
为了评估浒苔(Ulva prolifera)对养殖废水的净化效果,本文研究了4个温度水平(22.5℃、25.5℃、28.5℃和31.5℃)和3种氮源(NH4Cl、NaNO2和NaNO3)下,浒苔对工厂化养殖水环境的适应能力及其净化效果。结果显示,96 h内4个温度处理组浒苔对总氨氮(TAN,包括NH4+-N和NH3)的平均吸收速率分别为14.65、14.88、14.48和13.53 μmol/(g?h),144 h内温度各处理组对亚硝态氮(NO2–-N)的平均吸收速率分别为11.28、10.48、9.11和8.38 μmol/(g?h),144 h内各温度处理组对硝态氮(NO3–-N)的平均吸收速率分别为9.41、8.62、8.80和7.35 μmol/(g?h);温度对浒苔的生长速率有极显著的影响(P<0.01),而氮源对浒苔的生长速率有显著影响(P<0.05);在相同氮源条件下,浒苔的生长速率随着温度的升高而逐渐降低;在相同温度条件下,氮源为氨氮(NH4+-N)时,浒苔的生长速率大于氮源为NO2–-N和NO3–-N的生长速率;温度和氮源对浒苔叶绿素a的含量影响不显著(P>0.05),氮源为NH4+-N和NO2–-N时,随着温度的升高,浒苔中叶绿素a的含量均有升高的趋势,而氮源为NO3–-N时,浒苔中叶绿素a的含量呈先降低再升高的趋势;温度和氮源对浒苔中类胡萝卜素的含量均有极显著影响(P<0.01)。随着温度的升高,各处理组浒苔中类胡萝卜素的含量均呈升高的趋势,其中,在28.5℃和31.5℃条件下,NO3–-N处理组浒苔类胡萝卜素的含量明显高于其他各处理组(P<0.05)。研究表明,温度在22.5℃~31.5℃范围内,浒苔可以有效吸收TAN、NO2–-N和NO3–-N等对虾工厂化养殖废水中的营养盐,浒苔对NH4+-N的吸收速率最大,但随着水温的升高,浒苔对NH4+-N、NO2–-N和NO3–-N的吸收速率均呈降低的趋势。  相似文献   

7.
真江蓠对氨氮去除效率与吸收动力学研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以真江蓠(Gracilaria asiatica)为实验材料,在实验室水平上测定了真江蓠培养密度对NH4-N去除效率和吸收速率的影响,比较了真江蓠在氮半饥饿和氮饱和状态下的氨氮吸收动力学特征以及不同起始浓度NH4-N对其吸收速率的影响.结果表明:真江蓠密度为2~24 g·L-1时,5 h内随着藻体密度增大和实验时间延长,真江蓠去氨氮能力也增强.当藻体密度为24g·L-1时,真江蓠在5 h内去除氨氮效率最高,达到99.77%.各种藻体密度在起始阶段保持较高吸收速率(30~41 μmol·g-1·h-1),随后藻体密度与吸收速率呈反比关系,其最低藻体密度组(2 g·L-1)在3 h和5 h吸收速率最大,分别为28.33 μmol·g-1·h-1和18.85μmol·g-1·h-1.在起始浓度梯度实验中,氮半饥饿和氮饱和真江蓠吸收氨氮的最大吸收速率和半饱和常数在1 h均达到最高值,分别为116.47、159.40μmol·g-1·h-1和439.70、913.61 μmol·g-1·h-1.之后随着培养时间的延长而降低.氮半饥饿和氮饱和真江蓠对NH4-N的吸收差别不显著;当氨氮浓度为300~500μmol·L-1时,氮半饥饿的真江蓠在起始1 h内有一个快速吸收阶段(40.7~102.1μmol·g-1·h-1),吸收速率与NH4-N浓度几乎成正比,此时不符合米氏动力学饱和方程,而在低N浓度下(100~200μmol·L-1),藻体对NH4-N的吸收则没有出现这种现象;随着培养时间延长,直到NH4-N浓度达到一定限度时,吸收速率可达到一极大值而符合米氏动力学饱和方程.该研究结果为大规模栽培真江蓠净化水体和生态修复提供了理论依据.  相似文献   

8.
以大型红藻真江蓠Gracilaria asiatica、脆江蓠Gracilaria chouae、蜈蚣藻Grateloupia filicina大型褐藻鼠尾藻Sargassum thunbergii、海黍子Sargassum pallidum为实验材料,研究了在10~25℃不同温度下这几种海藻对硝氮(NO3-N)的吸收和生长情况。结果表明,几种大型海藻对水体中NO3-N的吸收效果明显,其中真江蓠和脆江蓠的吸收速率15℃时最高,为0.507±0.136和0.448±0.095μmol/g·h,蜈蚣藻和鼠尾藻在20℃时最高,为0.614±0.033和0.289±0.019μmol/g·h,海黍子在25℃时吸收速率最高,为0.748±0.015μmol/g·h。结合去除效率常数来看,海黍子对NO3-N有更好的去除效果。温度变化对大型海藻的生长具有显著的影响,在20℃下大部分海藻相对生长速率达到最高,其中以脆江蓠最高,达到4.79%±0.45%/d。  相似文献   

9.
为探讨适宜大型海藻芋根江蓠(Gracilaria blodgettii)栽培的生态条件,分别测定了在不同总无机氮浓度(48μmol·L^-1、96μmol·L^-1、144μmol·L^-1、192μmol·L^-1、240μmol·L^-1、288μmol·L^-1和336μmol·L^-1)和不同氮磷比(N/P)(1/1、5/1、10/1、50/1和100/1)的培养条件下,芋根江蓠藻体的相对生长速率(RGR)和生化组分的变化。结果表明,最适总无机氮浓度为192μmol·L^-1,最适N/P为10/1。芋根江蓠适宜在氨氯(NH4^+-N)比例较高的海水中生长,3种无机氮最适合质量比值是m[硝氮(NO3^--N)]∶m(NH4^+-N)∶m[亚硝氮(NO-2-N)]=1∶10∶5和m(NO3^--N)∶m(NH4^+-N)∶m(NO-2-N)=5∶10∶1。在最适宜的营养盐因子环境条件下,芋根江蓠在生化组分(光合色素及可溶性蛋白)和抗氧化能力等方面都表现较好;而在海水总无机氮浓度过低、N/P过高以及NH4^+-N在总无机氮中所占比例较低等条件下,都不利于藻体正常生长,会导致藻体营养不良、生长缓慢。  相似文献   

10.
花津滩芽孢杆菌(Bacillus hwajinpoensis) SLWX2是1株从海水养殖环境分离的可高效去除水体中氨氮(NH4+-N)、亚硝酸氮(NO2–-N)和硝酸氮(NO3–-N)的菌株。本实验在添加葡萄糖条件下,研究NH4+-N、NO2–-N和NO3–-N作为唯一氮源和环境因子(温度、pH、C/N和盐度)对该菌株生长和脱氮性能的影响。结果显示,菌株对这3种形态氮的去除与其生长保持一致,主要发生在对数生长期;当NH4+-N作为唯一氮源时,生长和脱氮均没有延迟期,NH4+-N在去除过程中,没有NO2–-N和NO3–-N的积累;当NO2–-N作为唯一氮源时,生长和脱氮均有较长延迟期,在NO2–-N消除过程中,没有NH4+-N和NO3–-N的积累;当NO3–-N作为唯一氮源时,生长和脱氮也有较长延迟期,在NO3–-N消除过程中,基本检测不到NH4+-N,NO2–-N呈先上升后下降趋势。环境因子影响研究表明,环境因子对该菌株的生长和脱氮性能影响基本一致,在pH为6~8.5、温度为28~40℃、C/N为5~25、NaCl为0~30 g/L条件下,菌株展现了良好的生长特性和脱氮性能。其中,最佳条件中,温度为30℃,C/N为25,pH为8.0,盐度为25。该菌株可高效去除NH4+-N、NO2–-N和NO3–-N,对环境条件适应范围较广,在工业和养殖废水脱氮中具有较大的应用潜力。  相似文献   

11.
以沉水植物穗花狐尾藻(Myriophyllum spicatum L.)、伊乐藻(Elodea canadensis Michx)和金鱼藻(Ceratophyllum demersum L.)为试验对象,研究水体中不同硝态氮(NO_3~-N)和铵态氮(NH_4~+-N)浓度比对植物碳氮(C-N)代谢的影响。2015年春季栽培3种沉水植物;7月,截取长约10 cm的植物顶端于1 L的玻璃烧杯预培养,光暗比为14 L∶10 D,温度控制为光周期25℃,暗周期15℃,光照强度为110μmol/(m~2·s),预培养7 d后截取植物顶端1 g左右转入250 m L的锥形瓶,设计培养液总氮浓度为2 mg/L,按照NH_4~+-N与NO_3~-N的浓度比设置2∶1、1∶1、1∶2、2∶0、0∶2共计5个处理,以预培养液为对照,每个处理设置3个重复。结果表明:(1)与对照相比,氨氮添加显著提高了3种植物组织内游离氨基酸(FAA)的含量,且在氨氮浓度2 mg/L时FAA达最大;(2)植物体内可溶性糖含量(SC)存在显著的种间差异,二元方差分析显示处理间SC的差异,种间差异的贡献值为69%;(3)硝态氮完全替代氨态氮时,3种植物组织中的SC/FAA显著升高,二元方差分析显示处理间SC/FAA的差异主要源于氮源形态组成(56%);(4)伊乐藻体内FAA和SC含量均大于穗花狐尾藻和金鱼藻。这可能是它在富营养水体中更有优势的重要原因之一。  相似文献   

12.
采用上流式和下流式曝气生物滤池处理凡纳滨对虾(Litopenaeus vannamei)养殖污水,连续进行30 d,分析出水水质,并观察系统运行情况和装置污染状况。研究了养殖污水中化学需氧量、氨氮、硝酸盐氮、亚硝酸盐氮、无机氮及活性磷酸盐6项指标的去除效果。实验结果表明:从养殖污水主要污染物指标的去除效果和稳定性上看,上流式优于下流式曝气生物滤池。在系统进水化学需氧量质量浓度为7.62~8.20 mg/L、氨氮质量浓度为0.62~0.65 mg/L、硝酸盐氮质量浓度为0.54~0.59 mg/L、亚硝酸盐氮质量浓度为0.23~0.27 mg/L、无机氮质量浓度为1.40~1.47 mg/L、活性磷酸盐质量浓度为0.24~0.29 mg/L,水温为25℃~30℃时,上流式曝气生物滤池对养殖污水中6项指标的去除率分别为:45.2%、88.9%、58.5%、78.8%、75.3%和25.1%。可见,对氨氮的去除效果最佳,亚硝酸盐氮和无机氮次之,化学需氧量和硝酸盐氮的去除效果较差,活性磷酸盐去除率最低。  相似文献   

13.
溶解无机氮加富对海带养殖水体无机碳体系的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过室内模拟实验,研究了在海带养殖水体中添加不同浓度的无机氮(NO-3-N和NH+4-N)对海水无机碳体系的影响。结果表明,无机碳体系各组分的变化趋势与无机氮添加浓度和无机氮形态有关。当NO-3-N和NH+4-N浓度范围分别在(4.73~52.78)μmol/L和(2.56~34.66)μmol/L时,DIC、HCO-3和pCO2均随着营养盐浓度的增加呈下降趋势,其中以NO-3-3和NH+4-3组变化最为明显,均达到最低值,分别为2 054、2 112μmol/L,1 776、1 869μmol/L,86、114μatm;而当NO-3-N和NH+4-N浓度范围分别为(52.78~427.29)μmol/L、(34.66~268.33)μmol/L时,DIC、HCO-3和pCO2随着营养盐浓度的增加,其下降幅度逐渐减弱,但实验结束时DIC、HCO-3和pCO2仍低于对照组。NO-3-N对海带养殖水体无机碳体系的影响较NH+4-N明显,加NO-3-N组对水体的固碳能力显著高于加NH+4-N组。当NO-3-N和NH+4-N浓度分别为52.78μmol/L、34.66μmol/L时,海带的光合固碳能力达到最大,过高或者过低均会降低海带对水体无机碳的吸收固定。  相似文献   

14.
澧县王家厂水库生态因子的灰关联分析   总被引:1,自引:0,他引:1  
采用灰色系统关联度分析方法,以空间理论数学为基础,依规范性、偶对称性、整体性和接近性原则,计算并分析了在人工控制条件下澧县王家厂水库13个生态因子(透明度、水深、水温、溶解氧、酸碱度、电导率、氨氮、硝酸盐氮、总磷、总氮、氮磷比、浮游动物和浮游植物)的关联度,南河关联序结果为:氮磷比>总氮>硝酸氮>氨氮>浮游植物>浮游动物>溶解氧>酸碱度>总磷>水温>电导率>透明度>水深;北河:氮磷比>总氮>总磷>硝酸氮>浮游动物>水温>水深>酸碱度>溶氧>透明度>浮游植物>电导率>氨氮。分析表明,氮磷比、总氮和总磷是水库水体的优势影响因子。在研究过程中发现,除个别样点超出Ⅲ类水标准外,其余均在Ⅲ类范围内;说明王家厂水库在放养鱼类的情况下,通过合理的人工能量投入,可以达到既增加水体生物的多样性,又提高水体生产力,实现水生态保护的目的。  相似文献   

15.
利用均匀设计法设计得到的12种培养基及对照Zarrouk培养基对钝顶螺旋藻(Spirulina platensis)S6品系进行培养,研究了在不同培养基下螺旋藻对无机氮的吸收利用。结果表明,螺旋藻可以同时以NO3-N 和NH4-N为氮源。NO3-N对螺旋藻是最为通用和安全的氮源,但添加浓度以11mmol/L左右最为适宜,既可满足藻体的最佳生长需求又可降低养殖成本;适宜浓度的NH4-N可促进螺旋藻的生长,浓度过高则会造成NH3中毒,NH4-N的添加量以1.27~2.57mmol/L范围最为适宜。  相似文献   

16.
大口黑鲈投喂两种不同饲料对水质指标的影响   总被引:3,自引:0,他引:3  
为了研究投喂两种不同饲料(冰鲜下杂鱼与配合饲料)对大口黑鲈养殖水质指标的影响,在室内水泥池进行了28d的饲养试验.对水体中的COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2-N等指标进行了测定.结果表明,投喂两种饲料各指标均有不同程度的增加,但养殖一个月后冰鲜组比饲料组要高许多:杂鱼组COD、PO4--P、TP、TN、NH3-N、NO3--N、NO2--N分别为25.3mg/L、2.4mg/L、2.28mg/L、3.44mg/L、2.91mg/L、0.52mg/L、0.075mg/L,而配合饲料组分别为10.2mg/L、0.58mg/L、0.855mg/L、2.17mg/L、0.29mg/L、0.048mg/L、0.03mg/L.特别是PO4--P、TP,冰鲜组分别为饲料组的4.2倍和2.7倍.这说明投喂人工饲料可以减轻有机污染程度,特别是在控制PO4--P、TP的增加方面效果显著.试验结果对于控制水体的富营养化具有重要的指导意义.  相似文献   

17.
2013年5-9月对乌鲁木齐塔桥湾水库渔业水质展开了调查,通过监测酸碱度(pH)、叶绿素a(Chl-a)、亚硝酸盐氮(NO2--N)、氨氮(NH4+-N)、非离子氨(NH3-N)、高锰酸盐指数(CODMn)、总氮(TN)、总磷(TP)、溶解氧(DO)、水温(T)、蓄水量(V)共计11个项目,分析水库水质。利用相关性分析、单项污染指数、综合营养状态指数及主成分分析,对乌鲁木齐塔桥湾水库渔业水质的质量现状和污染特征进行研究。结果显示,水质呈弱碱性,pH月均值在7.45~8.59;NH3-N、NH4+-N、TN、CODMn、TP均严重地超过渔业水质标准限值;月均氮磷比为20.31~156.60:1,月均综合营养指数为58.9~78.3,水体一直处在氮元素过剩和富营养状态,营养盐和有机物是塔桥湾水库的主要污染物。水库多项水质因子之间存在密切的相关性,其中营养盐TN、TP、NO2--N、NH4+-N 两两之间的相关系数为0.742~0.890,蓄水量与TN、TP、NO2--N、NH4+-N、NH3-N、pH、Chl-a的相关系数在0.585~0.943。主成分分析表明,营养盐和有机物对水质的影响随时间而改变,5-8月,营养盐对水质的影响作用减弱,有机物、水温和溶解氧对水质的影响作用增强。积累的数据为新疆渔业养殖提供了资料,为渔业主管部门加强水产品质量安全源头监管提供参考,并对我国现有渔业水质标准中的氨氮和非离子氨指标规定进行了探讨。  相似文献   

18.
梅溪湖属于城市浅水湖泊,其沉积物特征可反映湖泊的水生态环境状况,对防止湖泊富营养化具有重要意义。2020年11月至2021年7月,分季节对梅溪湖表层沉积物(0~10 cm)进行了采样,分析了沉积物TN、NH4+、NO3-、TP、有效磷(AP)和有机质(OM)等指标的时空分布特征和污染程度。结果表明:沉积物(0~10 cm)TN、NH4+、NO3-、TP、AP和OM的平均含量依次为1654.68± 754.22 mg/kg、24.66± 20.02 mg/kg、13.60± 2.33 mg/kg、512.60± 281.39 mg/kg、8.58± 6.81 mg/kg和2.84± 1.43 %。湖区东部营养物和有机质含量最高。人类活动对梅溪湖表层沉积物营养盐的空间分布有着较大的影响。梅溪湖沉积物TP和NO3-含量在春季最高(4月份),冬季(1月)最低。AP含量在春季(4月)最高,在夏季最低(7月份)。沉积物TN、NH4+和OM含量没有明显的季节差异。梅溪湖沉积物TN和TP的含量变幅分别为667~4000 mg/kg和184~1475mg/kg,均已超出我国东部浅水湖泊沉积物的营养物参考阈值范围;TN和TP的标准指数变幅分别为1.21~7.27和0.31~2.46,TN全部超标,梅溪湖生态环境质量受N元素的影响较为严重,对湖泊生态系统安全构成了一定的威胁。相关分析表明,沉积物OM与TN、TP、AP、NH4+、NO3-均显著正相关,说明沉积物有机质的降解和释放对梅溪湖氮磷营养盐具有重要影响。  相似文献   

19.
采用一种芽孢杆菌制剂(Bacillus)对鳜(Siniperca chuatsi)及饵料鱼池塘进行水质调控。通过测定池塘水体的氨氮、亚硝酸盐、透明度及pH值等水质指标和池塘中浮游生物量,评价芽孢杆菌制剂对鳜及饵料鱼池塘水质和浮游生物的影响。结果表明,该芽孢杆菌制剂能够提高水质透明度,降解水体中氨氮和亚硝酸盐的含量,其中,亚硝酸盐的最大降解率为77.5%。投喂芽孢杆菌后,实验池塘和对照池塘浮游生物组成均变化不大,表明该制剂对池塘的浮游生物组成没有影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号