首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 347 毫秒
1.
以枯草芽孢杆菌为主的主要用于促进鱼类消化生长的微生态制剂I、多种混合微生物主要用于调节水质的微生态制剂II,或是两者混合使用的方法,比较研究了黑龙江省及辽宁省池塘养殖的鲤(Cyprinus carpio)、鲫(Carassius auratus)和草鱼(Ctenophyargodon idellus)的增重率、饲料系数...  相似文献   

2.
在黄河故道区,选用相邻且面积相同2口池塘,分别投喂营养成分完全相同饲料,试验组投喂饲料添加了鱼用添加剂,进行池塘养殖草鱼对比试验,结果表明试验池塘草鱼成活率较对照塘高出7%,饲料系数较对照塘降低10%,鱼增重率较对照塘提高6.4%,同时,套养寡食性鱼类和肉食性鱼类的试验塘水质状况和水环境明显优于对照塘。  相似文献   

3.
徐盛丰 《齐鲁渔业》2003,20(2):40-40
鲫是我国最普通的养殖鱼类,但传统上多在池塘中与鲤、草鱼、鲢、鳙混养,鲫作为非主体鱼生长受到抑制,产量较低。为提高鲫养殖效益,我局利用960m2石砌池进行主养彭泽鲫试验,发现鲫的群体增重倍数基本与鲤相当,存活率高,饲料系数和饲料成本与以往养殖  相似文献   

4.
曾娟  高启平  苏宝辉 《淡水渔业》2021,51(2):107-112
为探讨池塘内循环养殖模式下不同营养水平饲料对建鲤(Cyprinus carpiovar)生长性能及养殖效益的影响,以常规池塘养殖营养水平饲料为对照,提高蛋白、脂肪含量,形成3个营养水平的试验饲料,其中粗蛋白水平分别为32%、34%、38%,粗脂肪水平分别为8%、10%、11%,分别记为F1、F2、F3组,每组设3个重复,在跑道池(22 m×5 m×2 m)中连续投喂初始平均体重为(85.26±0.98)g的建鲤幼鱼72 d。结果显示:饲料营养水平对建鲤的存活率、增重率、特定生长率和饲料系数无显著影响;F3组蛋白质效率显著低于F1、F2。饲料营养水平对建鲤肝体指数、肠体指数和肥满度无显著影响;F3组的空腔率显著低于F1组。对照组F1的养殖效益最高,随着饲料营养水平的提高,建鲤养殖效益下降。综上所述,在池塘内循养殖模式下,投喂蛋白含量在32%左右,脂肪含量在8%左右及适量限制性氨基酸的饲料,建鲤幼鱼生长性能和养殖效益最好。  相似文献   

5.
随着驻马店市池塘养殖技术水平的提高,鱼用颗粒饲料被养殖户普遍接受,目前许多精养鲤、鲫、草鱼池塘中饲料成本已占整个养殖成本的70%~80%。科学的投饵方法有利于提高饵料利用率,减少浪费,降低饵料系数,提高水产养殖效益。根据笔者的实践经验将鱼用颗粒饲料投喂技术介绍如下:  相似文献   

6.
一、辽宁和黑龙江 辽宁省是我国大宗淡水鱼类重要养殖地区,传统养殖模式主要养殖鲤鱼,搭配养殖鲢鱼、鳙鱼、草鱼、鲫鱼、青鱼。辽宁省养殖的鳃鱼和鲫鱼大部分销售到黑龙江省和吉林省,鲢鱼、鳙鱼、草鱼狂本地区销售。黑龙江省水产市场上鲤鱼和鲫鱼销售价格的高低,决定了辽宁省养殖户的经济效益。  相似文献   

7.
在水温25~30℃下,将体质量为(110.23±0.43)g的草鱼饲养在3.0 m×2.0 m×1.2 m的加盖网箱中,分别投喂添加0%(对照组)、0.5%和2%的由芽孢杆菌、乳酸菌以及酵母菌复配且以麸皮为载体制成的微生态制剂(8.0×10~9 cfu/g)的膨化饲料饲养60 d,探究微生态制剂对草鱼生产性能和肠结构、菌群及酶活性的影响。试验结果显示,饲料中添加2%微生态制剂显著提高草鱼质量增加率、特定生长率(P<0.05),显著降低饲料系数、脏体比(P<0.05);饲料中添加2%微生态制显著提高肠伸展率、中肠肌层厚度和绒毛高度(P<0.05),提高中肠淀粉酶和脂肪酶活性(P<0.05)。饲料中添加微生态制剂增加草鱼肠道菌群α多样性、丰富度;改变草鱼肠道微生物组成,门水平上,对照组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(63.56%、32.52%)。0.5%添加组的草鱼肠道微生物中梭杆菌门和厚壁菌门含量最高(61.82%、20.27%)。2%添加组的草鱼肠道微生物中厚壁菌门含量最高(64.20%)。属水平上,2%添加组草鱼肠道优势菌属直接发生改变,Paeniclostridium和Erysipelatoclostridium丰度大幅上升。随着微生态制剂添加量的增加,肠道微生物的代谢功能增强,组成中与无机离子转运和代谢、碳水化合物转运与代谢、氨基酸转运与代谢等功能相关的菌群丰度升高。综上可知,饲料中添加芽孢杆菌、乳酸菌以及酵母菌等组成的微生物制剂可作为生产草鱼绿色饲料的重要措施。  相似文献   

8.
以刺参的存活率、增重率、特定生长率和肠道蛋白酶、淀粉酶、纤维素酶及肠道组织结构变化为评价指标,通过42 d的养殖实验,研究了在基础饲料(空白组)中添加20%生物胶为粘合剂制备粘性饲料(粘性饲料对照组),通过添加浒苔干粉(浒苔组)、微生态制剂(微生态制剂组)、中草药(中草药组) 3种投入品对浅海筏式网箱养殖刺参生理及生长的影响。结果显示,在散失率方面,粘性饲料比空白组饲料散失率降低33.42%,添加浒苔干粉、微生态制剂、中草药对饲料散失率的影响差异不显著(P>0.05);在生长方面,中草药组的增重率和特定生长率均为最高,分别达到(41.50±1.39)%和(0.82±0.02)%/d,显著高于其他4个实验组;在存活率方面,微生态制剂组和中草药组的存活率显著高于空白组和粘性饲料对照组。其中,中草药组存活率最高,达到(94.03±2.28)%;在消化酶活性方面,浒苔组、微生态制剂组和中草药组的淀粉酶活性分别在第10、20、30天达到峰值,峰值分别为(1.70±0.05)、(1.60±0.04)、(1.77±0.04) U/mg prot;粘性饲料对照组的蛋白酶活性波动最大,其活性在第10天达到峰值为(1.78±0.09) U/mg prot;空白组、粘性饲料对照组和浒苔组的纤维素酶活性均呈现先升高后降低的趋势,在实验周期内中草药组的纤维素酶活性表现为持续上升,而微生态制剂组刺参的纤维素酶活性表现出先下降后上升的趋势,最低值为(0.14±0.01) μg/g·min;肠道组织结构方面,粘性饲料对照组的肠道黏膜上皮层厚度显著增加(P<0.05),浒苔组的肌肉层厚度显著增加(P<0.05),中草药组和微生态制剂组刺参肠道组织结构完整,上皮细胞分泌旺盛。研究表明,通过添加生物胶所制作的粘性饲料可显著降低饲料散失率,添加微生态制剂和中草药可显著提高网箱养殖刺参的成活率,并显著提高刺参个体的消化酶活力和增重率,添加浒苔对刺参生长影响不显著。  相似文献   

9.
以刺参的存活率、增重率、特定生长率和肠道蛋白酶、淀粉酶、纤维素酶及肠道组织结构变化为评价指标,通过42 d的养殖实验,研究了在基础饲料(空白组)中添加20%生物胶为粘合剂制备粘性饲料(粘性饲料对照组),通过添加浒苔干粉(浒苔组)、微生态制剂(微生态制剂组)、中草药(中草药组)3种投入品对浅海筏式网箱养殖刺参生理及生长的影响。结果显示,在散失率方面,粘性饲料比空白组饲料散失率降低33.42%,添加浒苔干粉、微生态制剂、中草药对饲料散失率的影响差异不显著(P0.05);在生长方面,中草药组的增重率和特定生长率均为最高,分别达到(41.50±1.39)%和(0.82±0.02)%/d,显著高于其他4个实验组;在存活率方面,微生态制剂组和中草药组的存活率显著高于空白组和粘性饲料对照组。其中,中草药组存活率最高,达到(94.03±2.28)%;在消化酶活性方面,浒苔组、微生态制剂组和中草药组的淀粉酶活性分别在第10、20、30天达到峰值,峰值分别为(1.70±0.05)、(1.60±0.04)、(1.77±0.04)U/mg prot;粘性饲料对照组的蛋白酶活性波动最大,其活性在第10天达到峰值为(1.78±0.09)U/mg prot;空白组、粘性饲料对照组和浒苔组的纤维素酶活性均呈现先升高后降低的趋势,在实验周期内中草药组的纤维素酶活性表现为持续上升,而微生态制剂组刺参的纤维素酶活性表现出先下降后上升的趋势,最低值为(0.14±0.01)μg/g·min;肠道组织结构方面,粘性饲料对照组的肠道黏膜上皮层厚度显著增加(P0.05),浒苔组的肌肉层厚度显著增加(P0.05),中草药组和微生态制剂组刺参肠道组织结构完整,上皮细胞分泌旺盛。研究表明,通过添加生物胶所制作的粘性饲料可显著降低饲料散失率,添加微生态制剂和中草药可显著提高网箱养殖刺参的成活率,并显著提高刺参个体的消化酶活力和增重率,添加浒苔对刺参生长影响不显著。  相似文献   

10.
本研究探讨了饲料中添加和水体使用微生态制剂对建鲤体成分、血清指标、消化酶活性以及肠道菌群组成的影响。试验用建鲤初始体质量(242±9.6)g,3口面积0.13hm2的池塘,分为对照组、Ⅰ组、Ⅱ组,养殖密度为20 850尾/hm2,饲喂同一种商品饲料,其中Ⅰ组投喂时拌合微生态制剂并在水体中施用,Ⅱ组水体中使用微生态制剂,每日按总鱼体质量百分比2%~4%,投喂3次,养殖80d,并监测水质。试验结果表明,Ⅰ组和Ⅱ组肝脏粗脂肪显著低于对照组(P0.05);血清指标方面,Ⅰ组和Ⅱ组建鲤谷丙转氨酶比对照组低,其中Ⅰ组显著低于对照组(P0.05),Ⅰ组和Ⅱ组总蛋白高于对照组,Ⅰ组与对照组差异显著(P0.05);肠道酶活方面,Ⅱ组的碱性蛋白酶活性显著高于对照组,Ⅰ组和Ⅱ组淀粉酶和脂肪酶活性显著高于对照组(P0.05),各组的酸性蛋白酶活性差异不显著(P0.05);提取建鲤肠道菌群DNA,分析建立指纹图谱,对照组、Ⅰ组、Ⅱ组分别产生了12、18、16条可鉴别条带,均存在优势种群条带。Ⅰ组、Ⅱ组与微生态制剂的相似性系数分别为54.5%、55.1%,与对照组的相似性系数分别为70.2%、67.3%;对变形梯度凝胶电泳指纹图谱主要条带进一步回收、克隆和测序,结果共得到13条序列,将得到的序列在美国国立生物技术信息中心数据库中进行同源分析,发现建鲤肠道菌群归为芽孢杆菌纲、螺旋体纲、β-变形菌纲、梭菌纲、γ-变形菌纲等。研究结果发现,使用微生态制剂可影响鱼体代谢,改变体成分,一定程度上增强免疫机能和提高消化酶活性,改变建鲤肠道菌群结构,这为微生态制剂在水产养殖中的应用提供一定的依据。  相似文献   

11.
在水温24~29℃下,将675尾规格整齐、健康、体质量为(35.59士0.44)g的草鱼(Ctenopharyngodon idel-lus)随机分为9个处理,每处理3个重复,放养于水泥池中的网箱(100cm×50cm×100cm)内,投喂以鱼粉和豆粕为蛋白源,豆油作为脂肪源配制的3个蛋白水平(24%、28%、32%),每一蛋白水平设3个脂肪水平(4%、6%、8%),共计9种饲料。饲料蛋能比(P/E)在15.81-22.46 mg·kJ-1之间。92d的饲养表明:D4组(蛋白质含量为28.02%,脂肪为4.30%)草鱼的特定生长率最高,显著高于其他各组(P〈0.05)。随着饲料中蛋白含量的增加,草鱼全肠中蛋白酶的活力逐渐升高,之后又降低,以D4组饲料的蛋白酶活性最高,显著高于D1、D8和D9(P〈0.05)。本实验表明,该生长阶段的草鱼所需最适蛋白水平为28.02%,能量为14307kJ.kg-1,P/E约为19.58mg·kJ-1。  相似文献   

12.
不同开口饵料对克氏原螯虾幼虾发育及消化酶活性的影响   总被引:3,自引:0,他引:3  
实验采用丰年虫无节幼体、草鱼鱼糜、水蚯蚓、1号人工配合饲料和2号人工配合饲料为克氏原螯虾的开口饵料,观察幼虾存活率和生长情况。经过40d的培育,对幼虾的胃蛋白酶、胰蛋白酶、淀粉酶和脂肪酶的活力进行测定。结果表明:投喂丰年虫无节幼体的实验组幼虾存活率最高,为75,增重率和增长率也最大,分别为4746.00和171.00。幼虾的胃蛋白酶活性与投喂的饵料密切相关,投喂丰年虫无节幼体组幼虾的胃蛋白酶和胰蛋白酶活性分别为2.18U/mgprot和0.96U/mgprot,极显著高于投喂草鱼鱼糜实验组。实验的5种开口饵料中,丰年虫无节幼体是克氏原螯虾幼虾的最佳开口饵料。摄食丰年虫无节幼体可能提高了主要消化酶的活性,从而促进了克氏原螯虾幼体的生长。  相似文献   

13.
为比较山泉流水和池塘养殖草鱼的品质区别,测定了体质量为1500~1750 g的两种方式养殖草鱼的基本营养、矿物元素、胶原蛋白、氨基酸和脂肪酸含量及肌肉抗氧化能力。测定结果表明,山泉流水养殖草鱼水分、粗脂肪、K和Na含量显著低于池塘养殖草鱼(P<0.05),粗蛋白、灰分、P、Ca、Mg、Cu、Zn、Fe、Mn和Se含量显著高于池塘养殖草鱼(P<0.05);山泉流水养殖草鱼肌肉不可溶性胶原蛋白含量和超氧化物歧化酶活力显著高于池塘养殖草鱼(P<0.05),丙二醛含量则显著低于池塘养殖草鱼(P<0.05);山泉流水养殖草鱼的总必需氨基酸、鲜味氨基酸分别为15.76%、5.60%,显著高于池塘养殖草鱼(P<0.05),氨基酸评分、化学评分和必需氨基酸指数均高于池塘养殖草鱼;山泉流水养殖草鱼饱和脂肪酸、单不饱和脂肪酸显著低于池塘养殖草鱼(P<0.05),多不饱和脂肪酸含量显著高于池塘养殖草鱼(P<0.05)。综上可知,山泉流水养殖草鱼在蛋白与脂肪含量、肌肉抗氧化能力、氨基酸平衡性及脂肪酸质量等方面优于普通池塘养殖草鱼。  相似文献   

14.
尹军霞  陈瑛  孟丽丽 《水产科学》2007,26(11):610-612
将鲫鱼分为益生菌剂组和对照组,分别投喂添加益生菌剂和未添加佐剂的一般饲料后,检测各组鲫鱼肠道菌群、饲料系数、增重率和成活率等。试验结果表明,大肠杆菌和肠球菌是鲫鱼肠道非常住菌群(过路菌),乳酸杆菌、双歧杆菌、产气荚膜梭菌为常住菌群;益生菌剂能极显著减少鲫鱼肠道的好氧菌(P<0.01),极显著增加鲫鱼肠道的厌氧菌、双歧杆菌和乳酸杆菌(P<0.01),显著降低鲫鱼肠道的产气荚膜梭菌(P<0.05);益生菌剂能有效改善鲫鱼肠道菌群。益生菌剂能促进鲫鱼的生长和成活。  相似文献   

15.
采用聚丙烯酰胺凝胶电泳方法研究了鲤、鲢、鳙、草鱼亲鱼消化道消化酶的种类;用比色法及滴定法分别测其消化酶相对活性。结果表明:鲤、鲢、鳙、草鱼4种鱼消化道的蛋白酶、淀粉酶活性与食性有明显的相关性。其中,蛋白酶活性依次为鲤〉鲢〉鳙〉草鱼;淀粉酶活性依次为草鱼〉鲤〉鳙〉鲢。脂肪酶活性与食性的关系不明显。四种鱼消化酶的表达与消化道的组织结构特征相一致,消化道前2/5部位(G1、G2)的消化酶活性最高,是无胃鱼消化道的主要消化场所。消化道中央部位(G3)的消化酶活性次之,能将未消化完全的食糜进一步消化,而消化道后段(G4、G5)消化酶活性最低。可见,消化酶活性及消化功能呈递减形式,食物在消化道中随着消化、吸收,逐渐排出体外。本研究为鲤、鲢、草鱼、鳙4种鱼的营养生理学、高效饲料配比的研制及种质资源的科学管理提供理论依据。  相似文献   

16.
This paper reviews state-of-the-art techniques for culture of larval common carp, Cyprinus carpio, silver carp, Hypophthalmichthys molitrix, bighead carp, H. nobilis, and grass carp, Crenopharyngodon idella. Water temperature, food, and predation are important factors influencing larval survival and growth. Lower and upper lethal temperatures range from 3 to 44°C. Optimum growth temperatures range from 38 to 40°C. Lethal and optimum temperatures vary with acclimation temperature, fish age, and development stage of fish. Water temperatures are close to optimum for larval culture in tropical regions but are often too low in temperate climates. Intensive culture in temperature-controlled systems is important in temperate climates. The first food eaten by larvae in ponds consists mainly of protozoa, rotifers, and copepod nauplii. As fhe larvae grow, they quickly shift to larger food items, including cladocera and insect larvae. Management practices to enhance natural food development in earthen ponds include bottom drying, soil preparation, liming, fertilization, and agricultural crop cultivation. The development of food organisms in freshly filled ponds follows a pattern of succession. For best results, a pond should be stocked at the stage of succession when the size relationship between fish larvae (predators) and zooplankton (prey) is proper. A common practice is to stock larvae 3-7 days after filling. If ponds are filled too long before larvae are stocked, food relationships between fish and invertebrates can be reversed. Predator control includes biological, chemical, physical, and mechanical methods. Although great progress has been made in the development of dry starter diets, prepared feeds are not yet available for successful large-scale production. This problem is usually overcome by starting larvae with live food or with a mixture of live food and dry feed and by shifting larvae to dry diets as they grow. Live food either is collected from zooplankton ponds or is produced in intensive culture conditions. Systems for larval culture can range from ponds to intensive culture with water recirculation systems. Choice of the best system depends on the local climate, technical, and socio-economic conditions.  相似文献   

17.
2012年5-10月,在面积为0.19hm2的试验池1中放养体质量160g的松浦镜鲤(Cyprinus carpio Songpu)117,700尾·hm^-2,混养体质量160g的长丰鲢(Hypophthalmichthys molitrix)春片、乌子头和鳙(Aristichthys no-bilis)夏花鱼种。在面积为0.19hm2的试验池2中放养体质量149.5g的松浦镜鲤3,450尾·hm^-2,只混养鲢和鳙夏花,采用常规饲养方法。2012年10月2日,试验池1平均每hm2产鱼21,025.5kg,其中松浦镜鲤平均全长34.3cm,体质量1425g,产量18,294.0kg;长丰鲢春片平均体质量674g,平均产量1,816.5kg,长丰鲢夏花平均全长18.6cm,体质量112.4g,平均产量592.5kg;鳙夏花平均全长达12.1cm,体质量39.9g,平均产量322.5kg。试验池2平均每hm2产鱼3,069.0kg,其中松浦镜鲤平均全长35.0cm,体质量1225g,平均产量2,766.0kg;鲢夏花平均全长达11.3cm,体质量24.9g,平均产量130.5kg;鳙夏花平均全长达11.1cm,体质量35.1g,平均产量172.5kg。试验表明,高密度养殖的松浦镜鲤产量显著高于密度低时,长丰鲢夏花的出池体质量是普通鲢的4.5倍,特殊生长率(6.27%·d^-1)是普通鲢(3.5%·d^-1)的1.79倍。文中还讨论了松浦镜鲤养殖池的水质和技术特点。  相似文献   

18.
前期研究表明,生物絮团技术(biofloc technology,BFT)适于异育银鲫(Carassius auratus gibelio)养殖。为进一步优化BFT养殖模式,本研究设置3个实验组:BFT模式下EM菌添加组(BB组)、枯草芽孢杆菌(Bacillus subtilis)添加组(BI组)和BFT对照组(B组),以均体重(1.60±0.50)g的异育银鲫为研究对象,探讨BFT模式下外源添加益生菌对养殖动物生长、消化酶活性及肠道组织结构的影响。结果表明:(1)益生菌添加组异育银鲫增重率和特定生长率显著高于对照组(P0.05),BB和BI组的增重率分别提高了216.70%和184.04%,特定生长率分别提高了141.18%和125.49%,BB和BI组间差异不显著(P0.05);(2)益生菌添加组(BB组和BI组)的消化酶(淀粉酶、脂肪酶和胃蛋白酶)活性均显著高于对照组(B组)(P0.05)。益生菌添加组间,BB组淀粉酶活性显著高于BI组(P0.05),脂肪酶和胃蛋白酶活性亦高于BI组,但差异不显著(P0.05);(3)益生菌添加组肠道肌层厚度和黏膜下层厚度显著高于对照组(B组)(P0.05),BB组异育银鲫肠道黏膜皱襞高度和皱襞间质宽度与BI和对照组相比,均无显著差异(P0.05)。研究表明,BFT养殖模式下外源添加益生菌可以更好地促进异育银鲫生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号