首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
任采妮  麻秋云  戴小杰  叶深 《水产学报》2024,48(1):019306-019306
为了评估银姑鱼资源开发状态,实验根据2016年在浙江南部海域底拖网的调查数据,研究了银姑鱼的生活史参数,并基于单位补充量模型对其资源状态进行评价,进而探讨不同自然死亡系数和捕捞选择性对资源评价结果的影响。结果显示,银姑鱼渐近体长估计值为25.36 cm,生长速率为0.32/年,当前开捕体长(13.52 cm)远小于其初次性成熟体长(17.79 cm);自然死亡系数估计值为0.74,总死亡系数为2.62,当前捕捞死亡系数为1.88。基于以上参数,构建了单位补充量渔获量YPR模型和单位补充量亲体生物量SSBR模型,随着F的增加,YPR先增大后减小,而SSBR则减少。银姑鱼生物学参考点F0.1为0.78,Fmax为3.43,F20%为0.66,F40%为0.33,可知当前捕捞强度远大于防止补充型过度捕捞警戒线F20%。敏感性分析结果显示,自然死亡系数的不确定性将明显影响单位补充量模型的研究结果和相关生物学参考点的估算值,而不同选择性系数,尤其是开捕体长,也直接影响单位补充量模型的结果。研究表明,当前浙江南部近海银姑鱼种群已处于补充型过度捕捞状态,为维持渔业资源的可持续发展,建议适当减小开发力度,增大开捕体长;为提高资源状态评价的准确性,建议减小自然死亡系数的不确定性。本研究可为银姑鱼资源的养护和管理提供科学建议。  相似文献   

2.
以东南太平洋智利竹鱼为对象、以资源量动态模型为基础,使用模拟方法构建了"真实"的智利竹鱼种群及其渔业,评估了观测误差和过程误差对智利竹鱼资源评估和管理的影响。模拟的"真实"的智利竹鱼种群及其渔业结果显示,1997—2014年太平洋智利竹鱼资源量总体上呈逐年下降趋势,且远低于B_(MSY)的50%;捕捞死亡系数波动剧烈,仅在2012—2014年低于F_(MSY)且相对稳定。渔业资源评估模拟结果显示,观测误差和过程误差使资源量和B_(MSY)被低估,捕捞死亡系数和F_(MSY)被高估,且随机误差越大,资源量、B_(MSY)被低估,而捕捞死亡系数、F_(MSY)被高估的程度越大。渔业管理模拟的结果表明,捕捞控制规则采用恒定捕捞死亡系数时,未来10年基于50%2014年捕捞死亡系数的管理措施为最佳管理措施。由于捕捞死亡系数被高估,最佳管理措施实施后使得年总可捕捞量高于预期,而年资源量低于预期,资源量增长或恢复的速度变慢,资源可能同时处于过度捕捞状态和正遭受过度捕捞。过度捕捞的风险与随机观测误差和过程误差的大小成正比。  相似文献   

3.
Climate change and anthropogenic disturbances may affect marine populations and ecosystems through multiple pathways. In this study we present a framework in which we integrate existing models and knowledge on basic regulatory processes to investigate the potential impact of future scenarios of fisheries exploitation and climate change on the temporal dynamics of the central Baltic herring stock. Alternative scenarios of increasing sea surface temperature and decreasing salinity of the Baltic Sea from a global climate model were combined with two alternative fishing scenarios, and their direct and ecosystem‐mediated effects (i.e., through predation by cod and competition with sprat) on the herring population were evaluated for the period 2010–2050. Gradual increase in temperature has a positive impact on the long‐term productivity of the herring stock, but it has the potential to enhance the recovery of the herring stock only in combination with sustainable fisheries management (i.e., Fmsy). Conversely, projections of herring spawning stock biomass (SSB) were generally low under elevated fishing mortality levels (Fhigh), comparable with those experienced by the stock during the 1990s. Under the combined effects of long‐term warming and high fishing mortality uncertainty in herring SSB projections was higher and increasing for the duration of the forecasts, suggesting a synergistic effect of fishery exploitation and climate forcing on fish populations dynamics. Our study shows that simulations of long‐term fish dynamics can be an informative tool to derive expectations of the potential long‐term impact of alternative future scenarios of exploitation and climate change.  相似文献   

4.
Fisheries dynamics can be thought of as the reciprocal relationship between an exploited population and the fishers and/or managers determining the exploitation patterns. Sustainable production of protein of these coupled human‐natural systems requires an understanding of their dynamics. Here, we characterized the fishery dynamics for 173 fisheries from around the globe by applying general additive models to estimated fishing mortality and spawning biomass from the RAM Legacy Database. GAMs specified to mimic production models and more flexible GAMs were applied. We show observed dynamics do not always match assumptions made in management using “classical” fisheries models, and the suitability of these assumptions varies significantly according to large marine ecosystem, habitat, variability in recruitment, maximum weight of a species and minimum observed stock biomass. These results identify circumstances in which simple models may be useful for management. However, adding flexibility to classical models often did not substantially improve performance, which suggests in many cases considering only biomass and removals will not be sufficient to model fishery dynamics. Knowledge of the suitability of common assumptions in management should be used in selecting modelling frameworks, setting management targets, testing management strategies and developing tools to manage data‐limited fisheries. Effectively balancing expectations of future protein production from capture fisheries and risk of undesirable outcomes (e.g., “fisheries collapse”) depends on understanding how well we can expect to predict future dynamics of a fishery using current management paradigms.  相似文献   

5.
Stock assessment modeling provides a means to estimate the population dynamics of invasive fishes and may do so despite data limitations. Blue catfish (Ictalurus furcatus) were introduced to the Chesapeake Bay watershed to support recreational fisheries but also consume species of conservation need and economic importance. To assess management tradeoffs, managers need to understand the current status of the population and anticipate future population abundance and trends. A Bayesian size-based stock assessment model was used to estimate blue catfish abundance, fishing mortality, and size structure over time (2001–2016) in the tidal James River. The model estimated population size increases until around 2006, with declines in total abundance after 2011 and large blue catfish (≥80 cm total length) after 2001. These first estimates of blue catfish population dynamics in the Chesapeake Bay region provide inputs for projection models to evaluate prospective management actions and identify monitoring needs.  相似文献   

6.
An age-length structured model was built for European hake Merluccius merluccius in the central Mediterranean Sea using Gadget. This analytical framework allowed to integrate multiple sources of information, including fisheries-dependent and fisheries-independent data, collected at different scales and aggregation levels. The model includes the two main fisheries targeting hake in the area, the trawl and the gillnet fisheries, and account for differences in their selectivity and effort. Alternative models were used for testing different assumptions on recruitment and growth. The model is then used to predict the main trajectory of the stock during the next years and to evaluate the potential effects of implementing closed areas management scenarios in the hake nurseries as a specific tool to reduce fishing mortality on recruits. The modelling framework presented performed successfully also in a commercial landing data limited context, common for the Mediterranean. Our results provide statistical support for fast growth and multiple recruitment events assumptions. Including both these key features represent an unprecedented improvement of modelling hake population dynamics in the Mediterranean. We found that the reduction in the fishing effort that characterized the fisheries in the study area during the last few years, coupled with fast recovery abilities of the hake stock, has the potentiality to allow a moderate increase of the stock during the next years. Interestingly, our simulations show that the positive effects which might be expected from protecting hake nursery grounds are only marginally related to a reduction in hake recruits fishing mortality. Although our model relies on assumptions and surely represents an over-simplification of the real world, it still contributed to improve our understanding of the temporal dynamics of one of the most valuable fish stocks in the central Mediterranean.  相似文献   

7.
8.
澳洲鲭太平洋群系的资源评估与管理策略   总被引:1,自引:0,他引:1  
张畅  陈新军 《水产学报》2020,44(2):206-212
澳洲鲭是西北太平洋重要的经济种类,了解和掌握澳洲鲭太平洋群系资源开发状况对确保其可持续利用具有重要的意义。根据日本中央水产研究所提供的1995—2015年澳洲鲭太平洋群系的生产统计和资源调查资料,利用基于年龄结构的实际种群模型和单位补充量产量模型等进行资源量评估,分析澳洲鲭太平洋群系资源利用情况及其管理策略。结果显示,历年澳洲鲭太平洋群系资源量虽有波动但仍保持在较高水平,2015年资源量最高约为65万t;年平均捕捞死亡系数呈波动下降趋势,2015年捕捞死亡系数只有0.15,近五年平均捕捞死亡系数Fcur=0.33,单位补充量亲体量是未开发时的32.7%,不存在生长型捕捞过度,也不存在补充型捕捞过度,处于可持续开发状态。研究还探讨了水温变化引起自然死亡波动以及不同开捕年龄对澳洲鲭太平洋群系资源状况的影响。研究表明,该渔业目前开发和利用程度合理,建议使用F0.1做为管理参考点进行渔业资源的管理。  相似文献   

9.
10.
Individual performance defines population dynamics. Condition index – a ratio of weight and some function of length – has been louded as an indicator of individual performance and recommended as a tool in fisheries management and conservation. However, insufficient understanding of the correlation between individual-level processes and population-level responses hinders its adoption. To this end, we use composite modelling to link individual's condition, expressed through the condition index, to population-level status. We start by modelling ontogeny of European pilchard (Sardina pilchardus, Clupeidae) as a function of food and constant temperature using Dynamic Energy Budget theory. We then provide a framework to simultaneously track the individual- and population-level statistics by incorporating the dynamic energy budget model into an individual-based model. Lastly, we explore the effects of fishing pressure on the statistics in two constant and food-limited environmental carrying capacity scenarios. Results show that, regardless of the species' environmental carrying capacity, individual condition index will increase with fishing mortality, that is, with reduction of stock size. Same patterns are observed for gilthead seabream (Sparus aurata, Sparidae), a significantly different species. Condition index can, therefore, in food-limited populations, be used to (i) estimate population size relative to carrying capacity and (ii) distinguish overfished from underfished populations. Our findings promote a practical way to operationally incorporate the condition index into fisheries management and marine conservation, thus providing additional use for the commonly collected biometric data. Some real-world applications, however, may require additional research to account for other variables such as fluctuating environmental conditions and individual variability.  相似文献   

11.
A demographic analysis of the night shark (Carcharhinus signatus) was carried out to establish the conservation status of this species caught by longlines on oceanic banks off northeastern Brazil. The biological input parameters (age at first maturity, longevity, fecundity and natural mortality) used for the construction of life tables were taken randomly from their respective probability distributions, taking into account the uncertainty of the parameter estimates by employing Monte Carlo simulations. Nine scenarios were generated from natural (M), total (Z), initial (Z0—corresponding to the first year of life of the cohort) and population equilibrium (Z′) mortality rates. Each scenario was executed 1000 times, varying the vital input rates for the estimation of the demographic parameters (net reproductive rate, R0; mean generation length, G; and intrinsic rate of population increase, r). Age at first maturity for C. signatus is 10 years; 89.2% of the stock is made up of juveniles, with fishery recruitment beginning at 5 years of age. The scenarios reveal that catches prior to first sexual maturity result in a significant reduction in population (−8.1%/year) and that the population would only support current efforts if the individuals caught are over 10 years of age or if mortality due to fishing efforts corresponded to the equilibrium rate beginning with recruitment at 5 years of age. A low survival rate is estimated for the first year of life. In order for the population to remain in equilibrium with current mortality rates and recruitment age, survival should be around 0.9. The combination of a low initial survival rate, low fecundity, fishery efforts and the large number of juveniles caught indicates that the C. signatus population off northeastern Brazil is being overexploited.  相似文献   

12.
基于单位补充量模型的西江赤眼鳟种群资源利用现状评价   总被引:1,自引:0,他引:1  
赤眼鳟(Squaliobarbus curriculus)是珠江中下游最重要的经济鱼类之一,本研究利用2009—2014年西江肇庆江段渔业捕捞调查监测数据,分析了其生长和死亡参数历史变化,利用单位补充量渔获量(yieldperrecruitment,YPR)模型、单位补充量产卵群体生物量(spawning biomass per recruitment, SBR)和生物学参考点评估了赤眼鳟资源利用状况。结果表明,赤眼鳟体长(L)和体重(W)关系为W=2×10-5L2.9527(R^2=0.9595,n=2346),生长方程为L_t=725.802[1-e-0.110(t+0.613)]。目前西江的捕捞强度(F=0.96/a)和开发状况(E=0.86)远超种群可持续开发水平,赤眼鳟种群处于生长型捕捞过度状态。根据实际情况,建议将西江赤眼鳟开捕年龄提高至3龄(或开捕体长增大至238 mm),则预计单位补充量渔获量可增加175%,在珠江禁渔期制度的协同保护下,种群实际保护效果可能更好。  相似文献   

13.
Fishing operations on any given stock rarely generate fishing mortality that is uniform across all ages and sizes. Population‐selectivity refers to a scaled version of the age‐ or size‐specific fishing mortality experienced by a fish population. Although it is common to apply a sigmoid logistic curve for the selectivity produced by many kinds of fishing gear, the general characteristics of population–selection curves have not been well examined. In this study, generalized additive models were fit to sets of selection coefficients taken from 15 recent stock assessments conducted using the virtual population analysis approach. The selection coefficients predicted by the models provided smoothed representations of the shapes and temporal dynamics of selectivity. Four broad types of selectivity were found: increasing, asymptotic, domed, and having a saddle. Four specific cases, each dominated by one type of selection curve, were examined in detail. For all 15 stocks, the population–selection curves were not stable through time but underwent changes in shape, which in some cases were quite radical. Temporal variation in population‐selectivity has important implications for the conduct of fisheries modelling activities such as evaluating management strategies and forecasting catch and stock size.  相似文献   

14.
随着渔业资源评估理论、数理统计方法和计算机技术的进步, 资源评估模型朝着多样化和复杂化不断发展, 其中种群模拟技术是检测模型适用性和局限性的重要手段。该技术由种群仿真理念发展而来, 通过模拟“真实”种群的方式, 对资源评估结果和管理策略进行有效的评价和预测, 并凭借可结合海洋环境因子、鱼类洄游空间分布以及多鱼种渔业进行资源评估的特性, 已成为开发新资源的重要评估方法之一。为此, 本文对种群模拟的结构和发展过程进行了回顾, 对该技术的核心组成部分操作模型和常见的四类误差(过程误差、观测误差、模型结构误差和管理误差)展开分类讨论。此外, 本文还结合近年来迅速发展的数据缺乏和数据适中模型的特点, 根据实际应用案例对种群模拟的作用和使用前景进行梳理, 并就种群模拟技术发展中存在的主要问题和潜在解决办法提出分析和建议。  相似文献   

15.
Declines in landings of the hairtail Trichiurus japonicas indicate the need for more effective management of this species. Hairtail spawning peaks occur twice yearly in the Bungo Channel, in spring and autumn. Relationships between hairtail stock and brood seasonality were examined to determine if an association between either and a decline in landings existed. Stock assessments show that the biomass of both spring and autumn hairtail broods from within and around the Bungo Channel are decreasing, with a rapid reduction in spring-brood stock abundance after 2007 largely responsible for decreased landings. Yield and spawning per recruitment analyses indicate current fishing pressure to be higher than several reference points. We suggest that fishing pressure needs to be reduced by at least 20% of the current level for this fishery to remain sustainable, as the projected stock abundance and catch demonstrate that the current fishing pressure is unsustainable. Analysis of time-series data of recruits per spawning revealed spring-brood recruitment to have been strong in year classes 2003 and 2005. Of various options available for improved management of this fishery, we propose that fishing pressure should be reduced in the years following the appearance of strong year classes to increase future biomasses and landings.  相似文献   

16.
实际种群分析法(virtual population analysis,VPA)是开展渔业资源评估最有效的技术之一,一般以世代为基础开展评估.基于实际渔业存在渔汛期、休渔期等特点,本研究运用分期评估的概念对传统实际种群分析进行了扩展,即分期种群分析法,并根据不同时期的捕捞死亡特征,评估与分析了4种不同分期情景对评估结果的影响.模拟研究表明,由于分期不当造成评估结果的误差为6%~33%.文中一并给出了开展分期实际种群分析法对资料收集和参数评估的要求.该方法克服了传统实际种群分析法中没有全面分期产生的误差,使其扩展至适合于评估全年捕捞死亡率不稳定或非连续性渔业种群,评估结果也更接近于评估种群的真实值.  相似文献   

17.
黄海小黄鱼(Pseudosciaena polyactis)生态和种群动态的研究   总被引:7,自引:3,他引:7  
本文通过1985年至1990年的大规模黄海调查,对小黄鱼的资源分布、种群结构、生殖和摄食、生长和死亡的变化进行了分析研究,表明八十年代以来小黄鱼种群结构趋于简单、性成熟提前、生长加快。当前捕捞死亡率过高,以至于小黄鱼大部分群体在性成熟之前已被捕获。在八十年代中期,小黄鱼的资源量已降至五十年代的十至十五分之一。渔获量和资源量的下降主要是由于过度捕捞所致。只要黄海周围过高的捕捞力量的存在,小黄鱼资源很难得以恢复并达到最大持续产量。若将目前的捕捞死亡系数至少降低50%,开捕年龄应不低于2龄,则其资源才有可能恢复。  相似文献   

18.
Assumptions about the future productivity of a stock are necessary to calculate sustainable catches in fisheries management. Fisheries scientists often assume the number of young fish entering a population (recruitment) is related to the biomass of spawning adults and that recruitment dynamics do not change over time. Thus, managers often use a target biomass based on spawning biomass as the basis for calculating sustainable catches. However, we show recruitment and spawning biomass are not positively related over the observed range of stock sizes for 61% of 224 stocks in the RAM Legacy Stock Assessment Database. Furthermore, 85% of stocks for which spawning biomass may not drive recruitment dynamics over the observed ranges exhibit shifts in average recruitment, which is often used in proxies for target biomasses. Our results suggest that the environment more strongly influences recruitment than spawning biomass over the observed stock sizes for many stocks. Management often endeavours to maintain stock sizes within the observed ranges, so methods for setting management targets that include changes within an ecosystem may better define the status of some stocks, particularly as climate changes.  相似文献   

19.
ABSTRACT:   The present study assessed the stock state of Pacific cod Gadus macrocephalus caught off the coast of southern Hokkaido, Japan. Weight-based yield per recruitment (YPR) and spawning-biomass per recruitment (SPR) analyses were used for this assessment. The current fishing mortality (average from 1998 to 2000) was 0.65 and weight at first capture was 0.5 kg bodyweight. Under these fishing pressures, the YPR of Pacific cod in southern Hokkaido was 1.06 kg/recruitment and percentage of SPR (%SPR) was 6.9%. The %SPR was lower than the critical limit at 20%SPR. The main reason that values of both YPR and %SPR were not optimum, would be that the weight at first capture was too small. Raising the weight at first capture was thought to be a better strategy from the biological viewpoint, and reducing fishing mortality to 0.3 would be the next alternative strategy from the fisheries management viewpoint.  相似文献   

20.
以西南大西洋阿根廷滑柔鱼(Illex argentinus)为研究对象,基于连续时间的随机剩余产量模型(a stochastic surplus production model in continuous time,SPiCT),分析了6种方案下参数估计的变化及其对资源评估的影响。对比6种方案中阿根廷滑柔鱼的产量和单位捕捞努力渔获量(catch per unit effort,CPUE)的估计值与观测值间的最小残差平方和,方案3(设置了K、r、q的先验分布)为最适方案。相应的资源评估结果显示,2010年西南大西洋阿根廷滑柔鱼捕捞死亡系数小于最大持续产量时捕捞死亡系数F_(MSY),渔获量小于最大持续产量MSY,预期平衡生物量EEB大于最大持续产量时的生物量B_(MSY),这表明该资源在2010年尚未被过度开发利用。SPiCT模型综合考虑了环境因子、种群间相互作用和网具选择性等因素引起的观测和过程误差,较S、F-EDSP、S-F-EDSP模型及其他离散模型对数据要求低,计算方法简单,更适合数据有限、短生命周期渔业种类的资源评估。另外,可捕系数q值的设置严重影响了SPiCT模型K、B的估计,优化估计可捕系数q将有利于提高其资源评估的准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号