首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A paradigm of fisheries science holds that spawning stock biomass (SSB) is directly proportional to total egg production (TEP) of fish stocks. This “SSB–TEP proportionality” paradigm has been a basic premise underlying the spawner–recruitment models for fisheries management and numerous studies on recruitment mechanisms of fish. Studies on maternal effects on reproductive potential of a stock have progressed during the last few decades, leading to doubt concerning the paradigm. Nonetheless, a direct test of the paradigm at multidecadal scales has been difficult because of data limitations in the stock assessment systems worldwide. Here, we tested the paradigm for marine fish based on a novel combination of two independent 38‐year time series: fishery‐dependent stock assessment data and fishery‐independent egg survey data. Through this approach, we show that the SSB–TEP proportionality is distorted by density dependence in total egg production per spawner individual (TEPPS) or spawner unit weight (TEPPSW) at a multidecadal scale. The TEPPS/TEPPSW exponentially declined with biomass and thus was density‐dependent for Japanese sardine, a small pelagic species exhibiting a high level of population fluctuation, in the western North Pacific. By contrast, the TEPPS/TEPPSW was sardine‐density‐dependent for Japanese anchovy, another small pelagic species exhibiting a moderate level of population fluctuation well‐known for being out of phase with sardine. Our analysis revealed intraspecific (sardine) and interspecific (anchovy) density dependence in TEPPS/TEPPSW, which was previously unaccounted for in spawner–recruitment relationships. Such density‐dependent effects at the time of spawning should be considered in fisheries management and studies on recruitment mechanisms.  相似文献   

2.
A primary goal of ecosystem‐based fishery management is to reduce non‐target stock impacts, such as incidental harvest, during targeted fisheries. Quantifying incidental harvest has generally incorporated fishery‐dependent catch data, yet such data may be biased by gear non‐retention, observation difficulties, and non‐random harvest patterns that collectively lead to an impartial understanding of non‐target stock capture. To account for such issues and explicitly recognize the combined influence of ecological and harvest factors contributing to incidental capture within targeted fisheries, we demonstrate a probabilistic modelling framework that incorporates: (i) background rates of target and non‐target stock co‐occurrence as the primary ecological basis for incidental harvest; (ii) the probability of harvesting at localities exhibiting co‐occurrences; (iii) the probability of selecting for non‐target species with fishery gear; and, (iv) as a function of harvest effort, the overall probability of incidental capture for any non‐target stock contained in the species pool available for harvest. To illustrate application of the framework, simulation models were based on fishery‐independent data from a freshwater fishery in Ontario, Canada. Harvest simulations of empirical stock data indicated that greatest species‐specific capture values were over 4000 times more likely than for species with lowest values, indicating highly variable capture probabilities because of the combined influence of stock heterogeneity and harvest dynamics. Estimated bycatch–effort relationships will allow forecasting incidental harvest on the basis of effort to evaluate future shifts in fishing activity against specific ecosystem‐based fishery management objectives, such as reducing the overall probability of bycatch while maintaining target landings.  相似文献   

3.
Surplus production modelling has a long history as a method for managing data‐limited fish stocks. Recent advancements have cast surplus production models as state‐space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic surplus production model in continuous time (SPiCT), which in addition to stock dynamics also models the dynamics of the fisheries. This enables error in the catch process to be reflected in the uncertainty of estimated model parameters and management quantities. Benefits of the continuous‐time state‐space model formulation include the ability to provide estimates of exploitable biomass and fishing mortality at any point in time from data sampled at arbitrary and possibly irregular intervals. We show in a simulation that the ability to analyse subannual data can increase the effective sample size and improve estimation of reference points relative to discrete‐time analysis of aggregated annual data. Finally, subannual data from five North Sea stocks are analysed with particular focus on using residual analysis to diagnose model insufficiencies and identify necessary model extensions such as robust estimation and incorporation of seasonality. We argue that including all known sources of uncertainty, propagation of that uncertainty to reference points and checking of model assumptions using residuals are critical prerequisites to rigorous fish stock management based on surplus production models.  相似文献   

4.
Understanding the impacts of recreational fishing on commercially fished stocks is becoming increasingly relevant for fisheries managers. However, data from recreational fisheries are not commonly included in stock assessments of commercially fished stocks. Simulation models of two assessment methods employed in Australia's Commonwealth fisheries were used to explore how recreational fishery data can be included, and the likely consequences for management. In a data‐poor management strategy for blue eye trevalla, Hyperoglyphe antarctica (Carmichael), temporal trends in recreational catch most affected management outcomes. In a data‐rich age‐structured stock assessment for striped marlin, Kajikia audax (Philippi), estimates of stock status were biased when recreational catches were large or when the recreational fishery targeted different size classes than the commercial fishery and these data were not integrated into the assessment. Including data from recreational fishing can change perceptions of stock status and impact recommendations for harvest strategies and management action. An understanding of recreational fishery dynamics should be prioritised for some species.  相似文献   

5.
Despite improved knowledge and stricter regulations, numerous fish stocks remain overharvested. Previous research has shown that fisheries management may fail when the models and assessments used to inform management are based on unrealistic assumptions regarding fishers' decision‐making and responses to policies. Improving the understanding of fisher behaviour requires addressing its diversity and complexity through the integration of social science knowledge into modelling. In our paper, we review and synthesize state‐of‐the‐art research on both social science's understanding of fisher behaviour and the representation of fisher decision‐making in scientific models. We then develop and experiment with an agent‐based social–ecological fisheries model that formalizes three different fishing styles. Thereby we reflect on the implications of our incorporation of behavioural diversity and contrast it with the predominant assumption in fishery models: fishing practices being driven by rational profit maximizing. We envision a next generation of fisheries models and management that account for social scientific knowledge on individual and collective human behaviours. Through our agent‐based model, we demonstrate how such an integration is possible and propose a scientific approach for reducing uncertainty based on human behavioural diversity in fisheries. This study serves to lay the foundations for a next generation of social–ecological fishery models that account for human behavioural diversity and social and ecological complexity that are relevant for a realistic assessment and management of fishery sustainability problems.  相似文献   

6.
Ecosystem‐based fishery management requires considering the effects of actions on social, natural and economic systems. These considerations are important for forage fish fisheries, because these species provide ecosystem services as a key prey in food webs and support valuable commercial fisheries. Forage fish stocks fluctuate naturally, and fishing may make these fluctuations more pronounced, yet harvest strategies intended to ameliorate these effects might adversely affect fisheries and communities. Here, we evaluate trade‐offs among a diverse suite of management objectives by simulating outcomes from several harvest strategies on forage fish species. We demonstrate that some trade‐offs (like those between catches and minimizing collapse length) were universal among forage species and could not be eliminated by the use of different control rules. We also demonstrate that trade‐offs vary among forage fish species, with strong trade‐offs between stable, high catches and high‐biomass periods (“bonanzas”) for menhaden‐ and anchovy‐like fish, and counterintuitive trade‐offs for sardine‐like fish between shorter collapses and longer bonanzas. We find that harvest strategies designed to maintain stability in catches will result in more severe collapses. Finally, we show that the ability of assessments to detect rapid changes in population status greatly affects control rule performance and the degree and type of trade‐offs, increasing the risk and severity of collapses and reducing catches. Together, these results demonstrate that while default harvest strategies are useful in data‐poor situations, management strategy evaluations that are tailored to specific forage fish may better balance trade‐offs.  相似文献   

7.
We investigate the impact of oceanographic variability on Pacific bluefin tuna (Thunnus orientalis: PBF) distributions in the California Current system using remotely sensed environmental data, and fishery‐dependent data from multiple fisheries in a habitat‐modeling framework. We examined the effects of local oceanic conditions (sea surface temperature, surface chlorophyll, sea surface height, eddy kinetic energy), as well as large‐scale oceanographic phenomena, such as El Niño, on PBF availability to commercial and recreational fishing fleets. Results from generalized additive models showed that warmer temperatures of around 17–21°C with low surface chlorophyll concentrations (<0.5 mg/m3) increased probability of occurrence of PBF in the Commercial Passenger Fishing Vessel and purse seine fisheries. These associations were particularly evident during a recent marine heatwave (the “Blob”). In contrast, PBF were most likely to be encountered on drift gillnet gear in somewhat cooler waters (13–18°C), with moderate chlorophyll concentrations (0.5–1.0 mg/m3). This discrepancy was likely a result of differing spatiotemporal distribution of fishing effort among fleets, as well as the different vertical depths fished by each gear, demonstrating the importance of understanding selectivity when building correlative habitat models. In the future, monitoring and understanding environmentally driven changes in the availability of PBF to commercial and recreational fisheries can contribute to the implementation of ecosystem approaches to fishery management.  相似文献   

8.
Analysing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species‐level life‐history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time and among individuals. To address similar challenges, community ecologists studying plants, insects and other taxa increasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed “functional traits”). Here, we review the history of trait‐based methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait‐based approaches within existing fisheries analyses. We argue that measuring and modelling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait‐based approaches could account for time‐varying parameters in population models; improve fisheries management and harvest control rules; and inform size‐based models of marine communities. We then present a step‐by‐step primer for how trait‐based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait‐based methods in fisheries science, to complement existing public databases of life‐history parameters for marine organisms.  相似文献   

9.
Models of human dimensions of fisheries are important to understanding and predicting how fishing industries respond to changes in marine ecosystems and management institutions. Advances in computation have made it possible to construct agent‐based models (ABMs)—which explicitly describe the behaviour of individual people, firms or vessels in order to understand and predict their aggregate behaviours. ABMs are widely used for both academic and applied purposes in many settings including finance, urban planning and the military, but are not yet mainstream in fisheries science and management, despite a growing literature. ABMs are well suited to understanding emergent consequences of fisher interactions, heterogeneity and bounded rationality, especially in complex ecological, social and institutional contexts. For these reasons, we argue that ABMs of human behaviour can contribute significantly to human dimensions of fisheries in three areas: (a) understanding interactions between multiple management institutions; (b) incorporating cognitive and behavioural sciences into fisheries science and practice; and (c) understanding and projecting the social consequences of management institutions. We provide simple examples illustrating the potential for ABMs in each of these areas, using conceptual (“toy”) versions of the POSEIDON model. We argue that salient strategic advances in these areas could pave the way for increased tactical use of ABMs in fishery management settings. We review common ABM development and application challenges, with the aim of providing guidance to beginning ABM developers and users studying human dimensions of fisheries.  相似文献   

10.
Interacting social and ecological processes shape productivity and sustainability of island small‐scale fisheries (SSF). Understanding limits to productivity through historical catches help frame future expectations and management strategies, but SSF are dispersed and unaccounted, so long‐term standardized data are largely absent for such analyses. We analysed 40 years of trade statistics of a SSF product that enter international markets (sea cucumber) from 14 Pacific Island Countries and Territories (PICT) against response variables to test predictors of fishery production: (i) scale, (ii) productivity and (iii) socio‐economics. Combined production in PICT peaked over 20 years ago, driven by exploitation trends in Melanesia that accounted for 90% of all production since 1971. The size of island fisheries (as measured by total exports), and the duration and magnitude of fishery booms were most influenced by ungovernable environmental variables, in particular land area. The large and high islands of Melanesia sustained larger booms over longer periods than atoll nations. We hypothesize that land area is a proxy for land‐based nutrient availability and habitat diversity, and therefore the productivity of the shallow water areas where SSF are operating. PICT need to tailor management based on the intrinsic productivity of shallow inshore habitats: harvests from atoll nations will need to be smaller per unit area than at the high islands. Particularly countries with low productivity fisheries must consider the crucial economic “safety nets” that export SSF make up for dispersed island populations and incorporate them into broader development and island resilience strategies.  相似文献   

11.
We review the precautionary approach to fisheries management, propose a framework that will allow a systematic assessment of insufficient precaution and provide an illustration using an Antarctic fishery. For a single‐species fishery, our framework includes five attributes: (1) limit reference points that recognize gaps in our understanding of the dynamics of the species; (2) accurate measures of population size; (3) ability to detect population changes quickly enough to arrest unwanted declines; (4) adequate understanding of ecosystem dynamics to avoid adverse indirect effects; and (5) assessment of the first four elements by a sufficiently impartial group of scientists. We argue that one or more of these elements frequently fail to be present in the management of many fisheries. Structural uncertainties, which characterize almost all fisheries models, call for higher limit points than those commonly used. A detailed look into the five elements and associated uncertainties is presented for the fishery on the Antarctic toothfish in the Ross Sea (FAO/CCAMLR Area 88.1, 88.2), for which management was recently described as ‘highly precautionary’. In spite of having features that make the Ross Sea fishery ideal for the application of the precautionary approach, gaps in our knowledge and failure to acknowledge these gaps mean that current regulation falls short of being sufficiently precautionary. We propose some possible remedies.  相似文献   

12.
Overfishing may seriously impact fish populations and ecosystems. Marine protected areas (MPAs) are key tools for biodiversity conservation and fisheries management, yet the fisheries benefits remain debateable. Many MPAs include a fully protected area (FPA), restricting all activities, within a partially protected area (PPA) where potentially sustainable activities are permitted. An effective tool for biodiversity conservation, FPAs, can sustain local fisheries via spillover, that is the outward export of individuals from FPAs. Spillover refers to both: “ecological spillover”: outward net emigration of juveniles, subadults and/or adults from the FPA; and “fishery spillover”: the fraction of ecological spillover that directly benefits fishery yields and revenues through fishable biomass. Yet, how common is spillover remains controversial. We present a meta‐analysis of a unique global database covering 23 FPAs worldwide, using published literature and purposely collected field data, to assess the capacity of FPAs to export biomass and whether this response was mediated by specific FPA features (e.g. size, age) or species characteristics (e.g. mobility, economic value). Results show fish biomass and abundance outside FPAs was higher: (a) in locations close to FPA borders (<200 m) than further away (>200 m); (b) for species with a high commercial value; and (c) in the presence of PPA surrounding the FPA. Spillover was slightly higher in FPAs that were larger and older and for more mobile species. Based on the broadest data set compiled to date on marine species ecological spillover beyond FPAs' borders, our work highlights elements that could guide strategies to enhance local fishery management using MPAs.  相似文献   

13.
The effectiveness of recreational fisheries governance has been mixed, with some countries boasting good governance practices that sustain productive recreational fisheries, while others lack any policies and governance structures specific to recreational fisheries. Here, we identify what constitutes effective governance of recreational fisheries by carrying out: (a) a desktop review of 227 country‐specific fisheries legislation, policies and strategies; and (b) a follow‐up questionnaire‐based survey covering 57 contacts in 29 selected countries. Our results show that while recreational fishing is referred to in the main legislation of 67% of the countries reviewed, only 86 of these 152 countries provide a definition for either “recreational” or “sport” fishing and not always in the main legislation. Recreational fisheries are not considered to be effectively managed in many countries, with less than a quarter of respondents claiming that management in their country is effective. Furthermore, the management efficacy, including compliance with regulations, was considered greater for the industrial and small‐scale fishing sectors than for recreational fisheries in most countries. From our findings, it appears that effective recreational fisheries governance requires explicit acknowledgement of recreational fisheries with a clear legal definition in Policy, a well‐developed Policy statement, extensive co‐management processes, clearly defined biological, economic and social monitoring structures and efficient and transparent cost recovery mechanisms. To ensure adaptation to rapidly changing conditions, policy should recognize all fishery sectors and proactively incorporate adaptive planning and contingency plans to effectively secure the diverse values of resources for all users.  相似文献   

14.
Effective management of fisheries depends on the selectivity of different fishing methods, control of fishing effort and the life history and mating system of the target species. For sex‐changing species, it is unclear how the truncation of age‐structure or selection of specific size or age classes (by fishing for specific markets) affects population dynamics. We specifically address the consequences of plate‐sized selectivity, whereby submature, “plate‐sized” fish are preferred in the live reef food fish trade. We use an age‐structured model to investigate the decline and recovery of populations fished with three different selectivity scenarios (asymptotic, dome‐shaped and plate‐sized) applied to two sexual systems (female‐first hermaphroditism and gonochorism). We parameterized our model with life‐history data from Brown‐marbled grouper (Epinephelus fuscoguttatus) and Napoleon fish (Cheilinus undulatus). “Plate‐sized” selectivity had the greatest negative effect on population trajectories, assuming accumulated fishing effort across ages was equal, while the relative effect of fishing on biomass was greatest with low natural mortality. Fishing such sex‐changing species before maturation decreased egg production (and the spawning potential ratio) in two ways: average individual size decreased and, assuming plasticity, females became males at a smaller size. Somatic growth rate affected biomass if selectivity was based on size at age because in slow growers, a smaller proportion of total biomass was vulnerable to fishing. We recommend fisheries avoid taking individuals near their maturation age, regardless of mating system, unless catch is tightly controlled. We also discuss the implications of fishing post‐settlement individuals on population dynamics and offer practical management recommendations.  相似文献   

15.
Evidence is accumulating that many marine ectotherms are undergoing rapid changes in their life‐history characteristics. These changes have been variously attributed to fisheries‐induced evolution, inhibited adult growth rate due to oxygen limitation at higher temperatures, and plastic responses to density dependence or changes in ocean productivity. Here, we review the diverse underlying mechanisms by which plastic and evolutionary responses to climate change and fisheries are likely to produce similar life‐history trends in harvested marine ectotherms, leading to faster life‐histories with earlier maturation and smaller adult size‐at‐age. While mechanistically understanding these growth and maturation changes may be difficult, it is becoming clear that changing life‐histories will lead to modified population dynamics, productivity and natural mortality of the affected species. We discuss how the observed and expected life‐history changes could affect the assumptions and uncertainty within single and multispecies models currently used in marine ecosystem management, highlighting that models which allow for dynamic life‐history traits often report significantly different estimates of stock biomass. Given that both climate‐ and harvest‐induced life‐history changes are likely to intensify and possibly amplify each other, there is an urgent need to adequately assess the implications of faster life‐histories for marine ecosystem management. This is especially true for data‐poor stocks, where growth and maturation are not regularly assessed. Targeted monitoring can be used to inform responsive management, but for improved sustainability outcomes, a precautionary approach to management that is robust to life‐history trends is advised.  相似文献   

16.
Gulf (Brevoortia patronus, Clupeidae) and Atlantic menhaden (Brevoortia tyrannus, Clupeidae) support large fisheries that have shown substantial variability over several decades, in part, due to dependence on annual recruitment. Nevertheless, traditional stock–recruitment relationships lack predictive power for these stocks. Current management of Atlantic menhaden explicitly treats recruitment as a random process. However, traditional methods for understanding recruitment variability carry the very specific hypothesis that the effect of adult biomass on subsequent recruitment occurs independently of other ecosystem factors such as food availability and predation. Here, we evaluate the predictability of menhaden recruitment using a model‐free approach that is not restricted by these strong assumptions. We find that menhaden recruitment is predictable, but only when allowing for interdependence of stock with other ecological factors. Moreover, while the analysis confirms the presence of environmental effects, the environment alone does not readily account for the complexity of menhaden recruitment dynamics. The findings set the stage for revisiting recruitment prediction in management and serve as an instructive example in the ongoing debate about how to best treat and understand recruitment variability across species and fisheries.  相似文献   

17.
The behavioural dynamics of fishers: management implications   总被引:4,自引:0,他引:4  
In pursuing their livelihood, fishers develop strategies when faced with changes in regulations and other fishery conditions. Changes involve each individual in a decision‐making process governed by his/her own goals or constraints. Despite this reality, the complex dynamics of fishing has usually been ignored in designing management initiatives, which has contributed to management failures in many parts of the world. Fishers have generally been treated as fixed elements, with no consideration of individual attitudes based on their operating scales (geographical, ecological, social and economic) and personal goals. We review existing research on the social, economic and behavioural dynamics of fishing to provide insight into fisher behaviour and its implications for fisheries management. Emphasis is placed on fisher perception, and how fishers develop dynamic fishing tactics and strategies as an adaptive response to changes in resource abundance, environmental conditions and market or regulatory constraints. We conclude that knowledge of these dynamics is essential for effective management, and we discuss how such information can be collected, analysed and integrated into fisheries assessment and management. Particular emphasis is placed on small‐scale fisheries, but some examples from industrial fleets are provided to highlight similar issues in different types of fisheries.  相似文献   

18.
Spatially explicit fisheries simulation models for policy evaluation   总被引:3,自引:0,他引:3  
This paper deals with the design of modelling tools suitable for investigating the consequences of alternative policies on the dynamics of resources and fisheries, such as the evaluation of marine protected areas (MPA). We first review the numerous models that have been developed for this purpose, and compare them from several standpoints: population modelling, exploitation modelling and management measure modelling. We then present a generic fisheries simulation model, Integration of Spatial Information for FISHeries simulation (ISIS‐Fish). This spatially explicit model allows quantitative policy screening for fisheries with mixed‐species harvests. It may be used to investigate the effects of combined management scenarios including a variety of policies: total allowable catch (TAC), licenses, gear restrictions, MPA, etc. Fisher's response to management may be accounted for by means of decision rules conditioned on population and exploitation parameters. An application to a simple example illustrates the relevance of this kind of tool for policy screening, particularly in the case of mixed fisheries. Finally, the reviewed models and ISIS‐Fish are discussed and confronted in the light of the underlying assumptions and model objectives. In the light of this discussion, we identify desirable features for fisheries simulation models aimed at policy evaluation, and particularly MPA evaluation.  相似文献   

19.
Individual quota (IQ) management systems in commercial marine fisheries are highly diverse, differing in the security, durability and exclusivity of the harvesting privilege and the transferability of quota units. This diversity in the degree of harvest rights may influence the effectiveness of IQ fisheries to meet management objectives. We conducted a global meta‐analysis of 167 stocks managed under IQs to test whether the strength of harvest rights impacts the conservation status of stocks in terms of catch, exploitation rate and biomass relative to management targets. We used non‐parametric methods to assess non‐linear relationships and linear regression models to explicitly consider interactions among predictors. Most IQ fisheries consistently met fleet‐wide quota limits (94% of stocks had recent catches below or within 10% of quotas), but only 2/3 of IQ fisheries adhered to sustainable management targets for biomass and exploitation rate (68% of stocks had exploitation rates below or within 10% of targets and 63% of stocks had biomass above or within 10% of biomass targets). Strikingly, when exclusivity of the harvesting privilege was low, exploitation rates depended on whether IQ implementation was industry‐driven (exploitation below targets) or government‐mandated (exploitation above targets). At high levels of exclusivity, exploitation rates converged to just below management targets. Transferability of quota units was associated with stock biomass closer to and slightly above target levels than stocks with non‐transferable quota. However, regional differences had the strongest effect on biomass, suggesting that other management or biological attributes of regional fishery systems have greater influence on marine populations.  相似文献   

20.
CITES (the Convention on International Trade in Endangered Species of Wild Fauna and Flora) aims to ensure that international trade in specimens of wild animals and plants does not threaten their survival. However, measuring the effectiveness and impacts of these trade regulations for commercially exploited aquatic species remains challenging. This study highlights observed or documented changes in elasmobranch fisheries in eight Southeast Asian countries before and after the listing of sharks and rays in CITES’ Appendix II, and the influence of CITES across five pillars or sectors of a “fishery assessment framework” developed especially for this purpose. Fisheries experts reported change was most common in the “governance” (e.g., policy, regulation and compliance) and “fisher(y)” sectors (e.g., structure and effort) of the assessment framework. The smallest change was recorded in “markets” (e.g., structures and prices) and “sociocultural” sectors (e.g., consumption, livelihoods and community awareness). Overall, the study demonstrates a measurable, albeit small, mostly positive influence of CITES in five of eight countries, while noting predominantly negative influences across two, and ongoing challenges for all in maintaining legal trade of these CITES‐listed species. The study concludes by offering guidance on future needs: most notably, more effort for long‐term collection of fundamental fisher‐, stock‐ and market‐related data to inform adaptive management and facilitation of legal trade where it is shown to be sustainable. Furthermore, as many of the shark and ray species under CITES provisions are transboundary stocks, increased support for communication and cooperation among regional fishery stakeholders is an ongoing need.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号