首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于稳定同位素方法的珊瑚礁鱼类营养层次研究   总被引:5,自引:2,他引:3  
以珊瑚礁生态系统中的鱼类作为研究对象,对2006年9月至2007年8月期间在徐闻珊瑚礁海区采集到的鱼类样本分类鉴定后,运用稳定碳氮同位素方法进行鱼类营养层次的分析。结果表明,δ13C值和δ15N值的跨度都很大,δ13C值的范围为–20.98‰~–9.05‰,相差11.93‰;δ15N值的范围为11.66‰~18.15‰,差值达6.49‰。与其他海区相比,δ13C值和δ15N值显得更为富集。由δ15N值计算出来的营养层次表明,徐闻珊瑚礁鱼类分布在两端(杂食性鱼类与高级肉食性鱼类)的只占少数,绝大多数居于中间的层次(低级肉食性鱼类与中级肉食性鱼类)。在134种鱼类中,种类数最多的是以条尾鲱鲤、少鳞代表的低级肉食性鱼类,有70种,占鱼类总数的52%;其次是以细鳞鯻、龙头鱼为代表的中级肉食性鱼类,有47种,占鱼类总数的35%;鰶以斑、前鳞骨鲻为代表的杂食性鱼类和以宽尾斜齿鲨、杂食豆齿鳗为代表的高级肉食性鱼类各有11种、6种,分别占鱼类总种类数的8%和5%。在此基础上选取54种鱼类进行稳定同位素方法与胃含物法分析结果对比,发现约85%的鱼种采用两种方法测定的结果在0.5个营养级的误差范围内一致,只有少数鱼种的差值大于0.5个营养级。由此可见稳定同位素分析法与传统的胃含物分析法所得的结果有很好的一致性,稳定同位素分析法是一种研究海洋食物网营养层次的有效方法。  相似文献   

2.
三峡水库小江流域鱼类营养层次研究   总被引:1,自引:0,他引:1  
应用碳、氮稳定同位素技术对小江流域鱼类的营养层次进行全面量化,以期为基于生态系统的三峡水库渔业与环境的科学管理提供理论支持。2013年5-6月,于三峡水库小江流域渠口、养鹿、高阳、黄石和双江江段设点进行稳定同位素测定样品采集,获取鱼类样品39种121尾,基线生物——颗粒有机物样品15个。小江流域各江段的颗粒有机物δ13C值范围为-28.29‰(养鹿)~-24.19‰(黄石),均值(-25.75±1.98)‰;δ15N值范围为1.40‰(养鹿)~6.97‰(高阳),均值(4.67±2.70)‰。不同江段相同鱼的稳定性同位素值的配对双样本t检验结果显示各江段的δ13C均无显著差异;高阳江段与养鹿、双江和渠口江段δ15N均有显著差异(P0.05),高阳江段与渠口江段的δ15N差异极显著。小江流域位于最低营养级的初级消费者为草鱼,平均相对营养级为2.15;流域以次级消费者的杂食性鱼类种类为主,相对营养级在2.66~3.85;营养级3.85以上的鱼类种类向肉食性鱼类转变,位居最高营养级的为长吻鮠,其相对营养级为5.12。各江段的平均相对营养级范围为2.84(高阳)~4.26(渠口),差值为1.42。基线生物的选择与陆源营养物质的输入为水域生态系统营养层次分析中的关键因素;对鱼类而言,其生活史不同阶段体内稳定同位素的差异也应纳入考量中。  相似文献   

3.
2016年2月和5月在浙江南部近海拖网采集到33种鱼类和18种无脊椎动物,利用稳定同位素技术测定渔业生物的稳定碳、氮同位素比值(δ~(13)C、δ~(15)N),并以此估算其营养级。研究结果表明:(1)浙江南部近海主要渔业生物同位素比值跨度范围大,δ~(13)C值范围为–19.71‰~–14.01‰(跨度5.70‰),δ15N值范围为7.05‰~13.69‰(跨度6.64‰),其中鱼类的碳、氮同位素跨度范围最大;(2)以滤食性双壳类为基线生物估算浙江南部近海鱼类平均营养级范围为2.66~4.21,甲壳类营养级范围为3.08~3.72,头足类营养级范围为2.83~3.49,腹足类营养级范围为3.54~3.62,渔业生物营养级主要处于3.0~4.0营养级,以初级和中级肉食性种类为主;(3)根据聚类和食性文献资料分析浙江南部近海主要渔业生物存在5种食性类型,包括浮游动物食性、杂食性、底栖生物食性、混合食性和游泳动物食性;(4)根据营养结构特征,浙江南部近海食物网营养结构可划分为4个营养群,初级消费者主要为杂食性种类,次级消费者主要为小型鱼类、虾类及头足类,中级消费者主要为底栖蟹类、腹足类和混合食性鱼类,高级消费者为凶猛肉食性鱼类。本研究建立了浙江南部近海主要渔业生物的连续营养谱,为生态系统的食物网能量流动和物质循环研究提供科学参考。  相似文献   

4.
研究老虎潭水库鱼类资源现状、群落结构特征、营养级及主要鱼类生长特性,为水质生物调控提供基础资料。2015年2月、5月、8月和11月利用漂流混合刺网、笼壶(地笼网)和抛撒抄网采集鱼类样本,对水库鱼类资源进行了系统调查。共发现鱼类35种,隶属于4目9科。其中,鲤形目28种,占总数的80%;鲇形目和鲈形目各3种,分别占总数的8.6%;合鳃目1种,占总数的2.8%;优势种有6种,分别为鳙、鲢、翘嘴鲌、鲫、黄尾鲴和伍氏半。鲢的全长、体重生长方程分别为:L_t=110.533[1-e~(-0.386(t+0.227))]、W_t=25.138[1-e~(-0.265(t+0.136))]~(3.118),鳙的全长、体重生长方程分别为:L_t=93.042[1-e~(-0.415(t+0.223))]、W_t=12.257[1-e~(-0.415(t+0.223))]~(2.756)。老虎潭水库鲢、鳙体重增长速度以1~3龄较高,3龄以后逐渐降低,鲢、鳙体重生长拐点分别为2.721龄和2.223龄。为最大程度发挥鲢、鳙洁水保水功效,建议起捕年龄均为3龄。碳、氮稳定同位素分析结果显示:老虎潭水库2种食物源的δ~(13)C值跨度范围为-28.99‰~-24.32‰、δ~(15)N值跨度范围为5.06‰~8.19‰,浮游植物的δ~(13)C、δ~(15)N值均大于有机碎屑。26种消费者δ~(13)C值跨度范围为-27.07‰~-20.42‰,平均(-24.76±1.54)‰;δ~(15)N变化范围为8.93‰~14.88‰,平均(12.03±1.47)‰。营养级分析结果显示,26种消费者的营养级从2.18到3.61,分属于2个营养级,且与其食性特征有较好的一致性。  相似文献   

5.
为探究太湖鱼类的营养生态位特征,于2019~2020年开展了太湖鱼类的碳氮稳定同位素调查,分析了鱼类营养生态位大小、生态位重叠度及营养级。研究结果表明,鱼类δ13C值范围为-27.67‰~-17.92‰,δ15N值范围为6.02‰~20.31‰。营养生态位大小(SEAc值)范围为0.14‰2~20.43‰2,其中黄颡鱼的生态位最大,光泽黄颡鱼的生态位最小。短颌鲚、陈氏短吻银鱼和鲢的SEAc值均较小,表明他们利用的食物源和生境范围较窄,鳙的SEAc值较大,表明其利用的食物源和生境范围较广。鱼类的营养生态位重叠度为0~70.6%。大银鱼与翘嘴鲌的生态位重叠度最大(70.6%),其次为鲈与翘嘴鲌(39.9%),其余物种间的生态位重叠度范围为0~38.9%。短颌鲚与其他肉食性鱼类的生态位重叠度较小,表明他们之间的食物资源竞争较弱。陈氏短吻银鱼与鲢、鳙在生态位上存在明显的分离,这与陈氏短吻银鱼专食浮游动物有关。鱼类营养级范围为0.73~3.62,鮠一种的营养级最高,泥鳅的营养级最低。分析表明,鱼类营养生态位的大小与其摄食的食物种类以及对不同生境的利用程度有关;大部分鱼类间生态位重叠度较低,表明鱼类在资源利用上存在较大分离。本研究结果也为太湖鱼类食物网分析及渔业资源管理提供了基础数据。  相似文献   

6.
应用氮稳定同位素技术分析了2010年6月和8月辽东湾海域主要渔业生物的氮稳定同位素比值,研究了28种鱼类和26种无脊椎动物的营养位置。结果表明,辽东湾海域主要渔业生物的营养级处于2.98~4.84,集中在3.70~4.56;相比6月δ15N值的分析结果,8月有50%的鱼类δ15N值增加,孔鳐(Raja porosa)增幅最大,增加了1.06‰;9种鱼类δ15N值减少,鯒(Platycephalus indicus)减幅最大,减少了1.84‰,可见鱼类样品的δ15N值随季节的变化因种类而各异;8月有87.5%的无脊椎动物δ15N值减少,其中,减少幅度大于1‰的有6种,占37.5%,可见无脊椎动物的δ15N值随季节的变化较明显。通过对不同采样点同种生物δ15N值的比较发现,辽东湾近岸海域的10种无脊椎动物的δ15N值均高于远岸海域,差值范围为0.05‰~1.49‰,差异极显著(P<0.01),说明人类活动引起的陆源污水排放使近岸海洋生物的δ15N值升高。  相似文献   

7.
摘要:鸢乌贼在中国南海海域资源丰富,是灯光罩网渔船的主要捕捞对象之一。本研究对南沙群岛海域中型群和微型群鸢乌贼样品进行采集,利用传统胃含物分析法和碳、氮稳定同位素技术研究其摄食习性、营养级、营养生态位及与饵料生物的关系。研究表明,鸢乌贼以摄食鱼类、头足类和甲壳类为主,且在不同生长阶段,饵料组成有所差异;胴长小于100 mm的微型群和胴长小于90 mm的中型群个体摄食以浮游动物和小型鱼类为主,100~119 mm的微型群个体和90~129 mm的中型群个体摄食以甲壳类、头足类和鱼类生物为主,大于120 mm的微型群和大于130 mm的中型群个体摄食饵料主要为鱼类和头足类。鸢乌贼中型群δ15N值范围为7.17‰~10.13‰,δ13C范围为-19.61‰~-18.10‰,微型群δ15N值范围为6.48‰~10.12‰,δ13C范围为-19.63‰~-17.81‰。分析显示,中型群和微型群的营养生态位重叠明显,表明群体间存在对食物资源的竞争;微型群的营养生态位宽幅大于中型群,其中微型群雄性群体与其他三个群体的核心生态位重叠部分偏低。鸢乌贼中型群的营养级范围为2.54~3.41,平均营养级为2.97,微型群的营养级范围为2.34~3.41,平均营养级为2.87;微型群雄性营养级相对较低且与其他类群存在较大差异,这可能与其体型大小密切相关。  相似文献   

8.
基于稳定同位素的口虾蛄食性分析   总被引:2,自引:0,他引:2  
为了探讨口虾蛄的食物组成,利用稳定同位素方法对2015年5月在汕尾红海湾海域采集的口虾蛄及其饵料生物的碳、氮稳定同位素比值(δ~(13)C和δ~(15)N值)进行分析,定量研究不同饵料生物在口虾蛄食物中的贡献比率。结果表明,口虾蛄的δ~(13)C值为–18.1‰~–16.3‰,δ~(15)N值为10.9‰~13.5‰,平均值分别为–17.1‰±0.5‰和12.7‰±0.7‰。δ~(13)C和δ~(15)N值的变化范围均较大,表明口虾蛄的食物来源较多。口虾蛄的食物主要由鱼类、虾类、贝类、蟹类和桡足类组成。其中,贝类为口虾蛄的主要食物,平均贡献率为38.6%;其次为蟹类和桡足类,平均贡献率分别为22.9%和16.0%;虾类的平均贡献率为13.6%;鱼类的平均贡献率最低,仅为8.9%。根据δ~(15)N值及营养级的计算公式得出,口虾蛄的营养级为3.01±0.22,在其5类食物中,桡足类的营养级最低,仅为1.77±0.12;其次为贝类;蟹类和虾类的营养级分别为2.78±0.21和2.89±0.16;鱼类的最高,为2.98±0.15;它们的营养级均低于口虾蛄。此外相关分析显示,口虾蛄的δ~(15)N值与其个体体质量间存在极显著的正相关关系,说明不同大小的口虾蛄营养级有所差异。  相似文献   

9.
为了解三峡大坝蓄水后库区干流鱼类食物网结构及营养关系的构成,应用碳(δ13C)、氮(δ15N)稳定性同位素技术,分别于2010年夏季(7月份)和冬季(12月份)对三峡库区巫山至万州段干流鱼类食物网结构及营养关系的季节变化进行了探讨,并与2005年夏季该区域鱼类食物网结构和营养关系组成情况进行了比较。结果显示:本次(2010年)调查颗粒有机物(POM)和固着藻类样品δ13C值分别为-25.62‰~-23.72‰、-19.81‰~-19.47‰,且无显著性季节(夏季和冬季)差异。POM 和固着藻类(内源性营养物质)是三峡库区巫山至万州段干流鱼类食物网基础能量的主要来源,但外源性营养物质输入也是其基础能量来源的重要补充途径。与2005年相比,2010年该区域鱼类食物网中消费者δ13C值富集度和食物网营养级长度均有所增加。该研究结果对三峡库区鱼类资源增殖放流和生态修复有重要指导意义。  相似文献   

10.
本研究通过对2011~2014年间在黄海及东海北部采集的36种海洋鱼类进行碳、氮稳定同位素测定,利用碳稳定同位素比值(δ13C)计算底层饵料贡献比(Bp)来确定鱼类的食性,利用氮稳定同位素比值(δ15N)计算其营养级(TL)。结果显示,这36种鱼类的营养级范围为2.75~4.34,平均值为3.47。其中,4种为完全浮游生物食性,8种为底栖生物食性,完全底栖生物食性为12种,混合食性为12种。中(TL=3.5~4)、低(TL<3.5)营养级的种类占大多数(91.67%),而高营养级(TL>4)种类较少,仅为3种,且全部为混合食性。营养级的研究结果与1986、1992和2004年的研究对比发现,个别种类发生了改变。如蓝点马鲛(Scomberomorus niphonius)营养级有不同程度的下降;而黄鲫(Setipinna taty)却有不同程度的上升。食性的研究结果与2004、2009和2011年的研究对比发现,有些种类食性发生了较大变化,如白姑鱼(Argyrosomus argentatus);有些种类食性几乎没有变化,如小黄鱼(Larimichthys polyactis)。  相似文献   

11.
The environmental processes associated with variability in the catch rates of bigeye tuna in the Atlantic Ocean are largely unexplored. This study used generalized additive models (GAMs) fitted to Taiwanese longline fishery data from 1990 to 2009 and investigated the association between environmental variables and catch rates to identify the processes influencing bigeye tuna distribution in the Atlantic Ocean. The present findings reveal that the year (temporal factor), latitude and longitude (spatial factors), and major regular longline target species of albacore catches are significant for the standardization of bigeye tuna catch rates in the Atlantic Ocean. The standardized catch rates and distribution of bigeye tuna were found to be related to environmental and climatic variation. The model selection processes showed that the selected GAMs explained 70% of the cumulative deviance in the entire Atlantic Ocean. Regarding environmental factors, the depth of the 20 degree isotherm (D20) substantially contributed to the explained deviance; other important factors were sea surface temperature (SST) and sea surface height deviation (SSHD). The potential fishing grounds were observed with SSTs of 22–28°C, a D20 shallower than 150 m and negative SSHDs in the Atlantic Ocean. The higher predicted catch rates were increased in the positive northern tropical Atlantic and negative North Atlantic Oscillation events with a higher SST and shallow D20, suggesting that climatic oscillations affect the population abundance and distribution of bigeye tuna.  相似文献   

12.
In this experiment, a feeding trial was performed to determine the effects of fructooligosaccharide (FOS) on growth performance, digestive enzyme activity and immune response of Japanese sea bass, Lateolabrax japonicus juveniles (initial weight 38.3 ± 0.5 g), and the fish were examined following feeding with six levels of FOS (0, 0.5, 1, 2, 4 and 6 g/kg) for 28 days. Significant enhancement of weight gain (WG) and specific growth rate (SGR) was found in fish fed 1 g/kg FOS incorporated diets (p < .05), while the feed conversion ratio (FCR) in the 1, 2 g/kg FOS groups reduced significantly compared with the control (p < .05). Besides, the crude lipid in the 4, 6 g/kg FOS groups increased significantly compared with the control (p < .05). On the other hand, the erepsin and lipase activities significantly elevated in intestine of fish fed 2 g/kg FOS (p < .05) and the lysozyme activity in serum of fish fed 2 g/kg FOS were significantly higher than that in the control (p < .05). Moreover, the alkaline phosphatase activities in serum of fish fed 0.5, 1, 2 g/kg FOS were significantly higher than in control (p < .05). Regression analysis showed that the relationships between dietary FOS levels and either SGR, FCR, erepsin or lysozyme activities were best expressed by regression equations, and the optimal inclusion levels are 1.37, 1.80, 3.06, 3.11, 1.93 and 1.80 g/kg for SGR, FCR, erepsin, lipase, lysozyme and total superoxide dismutase activities, respectively. Overall, this study revealed that FOS incorporated diets could beneficial for L. japonicus culture in terms of increasing the growth, digestion and immune activities. Under the present experimental condition, the optimal supplementary level of FOS in the diet of L. japonicus is 1–3 g/kg.  相似文献   

13.
Plasma estradiol-17 (E2), testosterone (T), 17,20-dihydroxy-4-pregnen-3-one (DHP) and 17,20,21-tri-hydroxy-4-pregnen-3-one (20-S) levels were measured by radioimmunoassay (RIA) in white perch (Morone americana) and white bass (M. chrysops) that were induced to undergo final oocyte maturation (FOM) with human chorionic gonadotropin (hCG). Plasma DHP levels increased in females of both species in association with oocyte germinal vesicle migration (GVM) and germinal vesicle breakdown (GVBD) and decreased thereafter. Plasma 20-S levels also increased with oocyte GVM in white bass, but were several-fold lower than DHP levels. Circulating E2 and T levels were greatest during GVM and GVBD in both species and decreased to low levels during oocyte hydration and ovulation. Follicles from white perch and white bass which received a priming injection of hCG in vivo, produced both DHP and 20-S in vitro after exposure to hCG and their oocytes underwent GVBD. Ovarian incubates from unprimed fish of either species produced only E2 and T and their oocytes did not complete GVBD. Oocytes from unprimed bass, but not perch, matured when follicles were exposed to hCG in vitro. Both trilostane and cycloheximide blocked in vitro production of DHP and 20-S and oocyte GVBD by white perch follices. DHP and 20-S were equipotent inducers of FOM in the GVBD bioassay. None of several other structurally-related steroids tested were effective within a physiological range of concentrations. These results indicate a role for DHP and 20-S in the control of FOM in white perch and white bass.  相似文献   

14.
Changes in heart rate, ventilatory activity and oxygen consumption were determined in trout (Salmo gairdneri) and brown bullhead catfish (Ictalurus nebulosus) during exposure to a steadily increasing concentration of waterborne cyanide selected to produce death in 8–9 hours for each species. The lethal cyanide concentration for the bullheads was an order of magnitude higher than for trout. Trout developed an immediate and gradually increasing bradycardia throughout the exposure period. Cyanide produced tachycardia in the bullhead followed by a gradual onset of bradycardia as the concentration of cyanide was raised. Pericardial injection of atropine (a muscarinic cholinergic antagonist) indicated that bradycardia in the trout was due initially to increased vagal tone but later due to the direct effect of cyanide on the heart. Hyperventilation in the trout persisted throughout the exposure period, although the rate and amplitude fluctuated and was variable between individual fish. During the last hour of exposure (highest cyanide concentration), ventilation was characterized by rapid, shallow breaths followed by a sudden respiratory arrest. The bullheads exhibited hyperventilation during the first 3 hours of exposure followed by a gradual, linear drop in ventilation rate and amplitude until death occurred. Cardiac and ventilatory responses in both species were attributed to stimulation of central and peripheral chemoreceptors by cyanide. Evidence is presented which suggests the initial response in the bullheads was due, at least in part, to gustatory stimulation by the cyanide. Oxygen consumption of the trout remained above pre-exposure levels for the majority of the test period. Oxygen consumption in the bullhead paralleled the changes in heart and ventilatory rates. Whole-body lactate levels of fingerlings of both species during cyanide exposure were measured to estimate the extent of anaerobiosis. Whole-body lactate levels were much greater in the bullheads than the trout, indicating a higher capacity for anaerobiosis, possibly due to a greater fuel supply. Overall, the trout responded to cyanide in a manner similar to that produced by environmental hypoxia whereas the bullheads experienced a gustatory stimulus which masked the hypoxia-like response.  相似文献   

15.
This study brings an integrated analysis about the relationship between water deterioration and its physiological consequences in live fish transport. The analysis was focused on the transport water and its deterioration, and physiological challenges imposed on the fish. Usual commercial handling procedures employed to mitigate fish stress during transport were discussed. Future topics of research for the establishment of safer fish transport protocols were proposed. Transport was classified into short (≤8 h) or long transport (>8 h). The main issue in short transports should be the prevention of water pH reduction, while in long transports it is the increase in ammonia. Plasma cortisol is the most employed marker for stress and is acutely elevated upon short episodes of transport, but remains elevated even in long‐transport events. Plasma glucose is perhaps a better marker for handling stress. Plasma lactate, pH, osmolality CO2 and ions should be more often evaluated. Plasma Na+ and Cl are very useful markers of acidosis, due to their respective exchange for H+ and , for acid–base regulation. The establishment of species‐specific transport protocols should be preceded by such combined analyses of water and physiological parameters.  相似文献   

16.
Abalone populations have declined worldwide, generating interest in enhancement using hatchery‐reared individuals. In many cases, such restoration efforts have met with limited success due to high predator‐induced mortality rates. Furthermore, the mortality rates of outplanted hatchery abalone are often considerably higher than for wild individuals. This study uses northern abalone (Haliotis kamtschatkana) as a case study to determine whether hatchery‐reared abalone behave differently than their wild counterparts. In the field, outplanted hatchery‐reared abalone were significantly less responsive than wild abalone, in terms of number of abalone responding and intensity of response, to nearby movement and to physical contact with an inert probe. Also, when encountering a cue to which all abalone responded (a seastar predator), hatchery‐reared individuals remained subdued. Anti‐predator behavioural deficits in hatchery‐reared abalone were more pronounced in 4‐year‐old individuals than in 1‐year‐old individuals, suggesting an influence of either age or amount of time spent in the hatchery environment. These behavioural differences are expected to increase the vulnerability of hatchery‐reared abalone to predators, and are likely a major cause of their elevated predator‐induced mortality when outplanted.  相似文献   

17.
The toxic effects of Cd2+ on Ca2+ influx kinetics in developing tilapia (Oreochromis mossambicus) larvae were evaluated. Addition of 20 µg l-1 of Cd2+ to the environment of 0 and 3 day-old larvae competitively inhibited the Ca2+ uptake within 4h resulting in a great increase in Km values for Ca2+ influx (19.3 and 17.4 fold, respectively) as compared with their respective controls. Consequently, the actual Ca2+ influx of larvae in solutions of 0.2 mM Ca2+ are suppressed by 32–45%. Also, 3 day-old larvae were more sensitive to internally accumulated Cd2+ than 0 day-old larvae. Although the Ca2+ influx in 0 and 3 day-old larvae may be restored to the levels of their respective controls with 24h of being transferred to a 20 µg l-1 Cd2+ solution, total body Ca2+ content was significantly reduced in 3 day-old larvae. Increased Ca2+ uptake efficiency ensures sufficient Ca2+ for normal growth. However, rapid increase in Ca2+ influx after hatching also leads to higher Cd2+ uptake. Exposure to Cd2+ will lead to a drop in body Ca2+ content resulting in retardation of larval growth. Therefore, we conclude that if Ca2+ uptake is interfered with at this critical stage of development, larvae will not be able to maintain normal levels of body Ca2+ and will show signs of Cd2+ poisoning.  相似文献   

18.
Migratory dynamics of stream-spawning longnose gar (Lepisosteus osseus)   总被引:1,自引:1,他引:0  
Abstract– Literature evidence suggests that lake-dwelling longnose gar (Lepisosteus osseus) enter tributary streams to spawn, Until the present study, the dynamics of this breeding migration had never been investigated quantitatively. During the summers of 1991 and 1992, longnose gar were captured as they entered Weaubleau Creek, Missouri, a tributary of Harry S. Truman Reservoir. The in-stream spawning migration began in early April and ended in late May, and was positively correlated with stream flow and water level, and negatively correlated with water temperature. In-stream residence times ranged from 15 to 94 days, with males exhibiting longer residence times than females. Once in-stream, longnose gar travelled as far as 10 km upstream and occupied certain pools at greater relative frequencies. Although the reason for this preferential utilization is not completely understood, it may relate to pool depth and riffle proximity. Longnose gar disperse from the spawning stream great distances, with gar captured in Weaubleau Creek being recaptured up to 48 km away. This information should provide fisheries biologists the means to consider the reproductive ecology of this species in their conservation and management decisions.  相似文献   

19.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Controlled incorporation of selected microalgae and bacteria in aquaculture systems can be beneficial because they can act as microbiological control. That is why the characteristics of biofilm generated naturally in Seriola lalandi culture cages were analysed, their potential benefit to the growth of larvae was studied, and their controlled use for improving the larval viability and as a vector to improve incorporation of previously studied probiotic bacteria was tested. According to biodiversity results, these biofilms are composed of a diatom–bacteria mix showing a decrease in biodiversity in laboratory culture conditions being dominated by Navicula phyllepta and bacteria of the family Rhodobacteraceae. This can be produced on mesh substrates incorporated in bioreactors with rapid growth rate and adhesiveness. Preliminary results from the addition of substrates with this specific biofilm in larvae culture systems showed that it is consumed by the larvae without negative effects, while positive effects on the viability of larvae in combination with probiotics were observed. Considering preliminary results, the addition of these specific substrates with diatom–bacteria biofilms could be a good improvement for aquaculture systems and together with the use of probiotics can contribute to maintaining a stable and controlled system improving the viability of the larval fish culture in its early stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号