首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Effects of environmental calcium concentrations on the survival, growth, body calcium content and calcium uptake kinetics in developing tilapia (Oreochromis mossambicus) larvae were studied. Fertilized eggs were incubated in high- and low-calcium artificial freshwater (0.88–0.96 mmol l–1 vs. 0.02–0.03 mmol l–1 CaCl2 or CaSO4) until 3 days after hatching. Tilapia larvae showed similar hatching rates and wet weights in either high- or low-calcium medium, indicating neither the development nor the growth in tilapia larvae was affected by the environmental calcium levels. The body calcium content in low-calcium groups was about 90–95% that of high-calcium groups, No matter what calcium source was used (CaCl2 or CaSO4), acclimation to low calcium medium caused a stimulation of calcium uptake (measured in 0.2 mmol l–1 calcium),i.e., 1.2–1.3 fold higher than that of high calcium groups. This enhanced calcium uptake capacity was characterized by a 50% decrease in Km and a 25% increase in Jmax. Effect of different calcium salts on calcium influx was significant only in low calcium level,i.e., calcium influx in low-CaCl2 group higher than that in low-CaSO4 group. These results suggest that tilapia larvae are able to modulate their calcium uptake mechanism to maintain normal body calcium content and growth in environments with different levels of calcium.  相似文献   

2.
Changes in Ca2+ content and flux, and the development of skin chloride cells in embryos and larvae of tilapia, Oreochromis mossambicus, were studied. Tilapia embryos hatched within 96h at an ambient temperature of 26–28°C. Total body Ca2+ content was maintained at a constant level, about 4–8 nmol per individual, during embryonic development. However, a rapid increase in body Ca2+ level was observed after hatching, 12.8 to 575.3 nmol per individual from day 1 to day 10 after hatching. A significant influx and efflux of Ca2+ occurred during development, with the average influx rate for Ca2+ increasing from 5.9 pmol mg−1 h−1 at 48h postfertilization to 47.8 pmol mg−1 h−1 at 1 day posthatching. The skin was proposed as the main site for Ca2+ influx before the development of gills, and the increased Ca2+ influx may be ascribed to gradual differentiation of skin surface and chloride cells during embryonic development. Ca2+ efflux was 16–56 pmol mg−1 h−1 in 1-day-old larvae. The resulting net influx of Ca2+, 10–12 pmol mg−1 h−1, accounted for the increased Ca2+ content after hatching. When comparing the measured and estimated ratios of efflux and influx, active transport was suggested to be involved in the uptake of Ca2+. Chloride cells, which may be responsible for the active uptake of Ca2+, started to differentiate in the skin of embryos 48h after fertilization, and the density of chloride cells increased following the development. A possibility of active transport for Ca2+ in early developmental stages of tilapia is suggested.  相似文献   

3.
The effect of sulfide on K+ influx pathways was measured in red blood cells (RBCs) of sulfide-sensitive rainbow trout (Oncorhynchus mykiss) and sulfide-tolerant crucian carp (Carassius carassius). In trout RBCs, maximal inhibition of Na+, K+-ATPase was attained at 10 mol l–1 sulfide and amounted to 32% without being influenced by pH between 6.7 and 8.3. Ouabain-resistant K+ influx in the absence and presence of sulfide was insignificant at pH values between 6.7 and 7.7. At higher pH values ouabain-resistant K+ influx increased, but was inhibited to about 15% by 30 mol l–1 sulfide. In RBCs of crucian carp neither Na+, K+-ATPase nor ouabain-resistant K+ influx were affected by sulfide concentrations up to 850 mol l–1. Differences in sulfide-sensitivity of K+ influx between both species can be based upon different properties of the membrane transporter themselves. The reduced Na+, K+-ATPase activity in trout RBCs may also result from a slightly reduced (by 9%) ATP level after sulfide exposure. In addition, intracellular sulfide concentrations were higher in trout RBCs as compared to crucian carp. In trout, intracellular sulfide concentrations reached extracellular levels within 5 min of incubation whereas sulfide concentrations in crucian carp RBCs remained about 2-fold lower than extracellular concentrations. Although the physiological basis of sulfide-insensitive K+ influx in crucian carp RBCs is currently unknown it may contribute to the extremely high sulfide-tolerance of this species.  相似文献   

4.
The effects of the Na+/K+ and Mg2+/Ca2+ ratios in saline groundwaters on Na+-K+-ATPase activity, survival and growth of Marsupenaeus japonicus postlarvae were investigated. The results indicate that the Na+-K+-ATPase activity, survival rate and weight gain of postlarvae were significantly affected by the Na+/K+ and Mg2+/Ca2+ ratios (P < 0.05). The Na+-K+-ATPase activity of postlarvae, in every treatment, changed corresponding to Na+/K+ and Mg2+/Ca2+ ratios, and came to a stable level after 24 h. There was a negative relation between Na+-K+-ATPase activity and Na+/K+ ratio, while there was a positive relation between Na+-K+-ATPase activity and Mg2+/Ca2+ ratio. Compared with seawater (the Na+/K+ and Mg2+/Ca2+ ratios are 27.8 and 4.64 respectively), the Na+-K+-ATPase activity of the Na+/K+ ratio 30 treatment showed no significant difference, while the Mg2+/Ca2+ ratio 4.5 treatment showed distinct difference. The survival rates and weight gain of postlarvae increased markedly when the suitable amount of K+ and Ca2+ was added to test water, and arrived at their maximum in the Na+/K+ ratio 20-30 or Mg2+/Ca2+ ratio 4.5 treatment, having no significant difference compared with normal seawater. Therefore, considering the Na+/K+, Mg2+/Ca2+ ratios and the absolute concentration of Mg2+, Ca2+ in the experimental saline groundwaters applied to Marsupenaeus japonicus farming, it should be modulated to around 30, 4.5 and 1312 mg/l, 291 mg/l, respectively.  相似文献   

5.
An intracellular ATP-dependent Ca2+ pumping mechanism, distinct from mitochondrial Ca2+ accumulation, was identified within tilapia gill cells. Cell suspensions treated with 0.003% saponin, which selectively permeabilizes the plasma membrane, were used to characterize the Ca2+ sequentering mechanisms as endoplasmic reticulum and mitochondria and to determine the effect of Zn2+ on their Ca2+ storing activity. Of the Ca2+ taken up by the endoplasmic reticulum, 80% was released by IP3 (10 mol l–1). The Ca2+ pump of the endoplasmic reticulum was 2.5 times less sensitive to Zn2+ (IC50=0.05 nmol l–1) than was the mitochondrial uptake mechanism (IC50=0.20 nmol l–1). The results indicate that Ca2+ is stored predominantly within the endoplasmic reticulum at 0.1 mol l–1 and that this storing capacity is seriously attenuated by namomolar concentrations Zn2+.  相似文献   

6.
Using tracer-uptake studies we investigated whether the branchial uptakeof cobalt occurs via selective, inhibitable, calcium uptake routes.Modulation of the calcium transport system was performed using generalcalcium channel blockers (Cd2+, La3+,Mg2+), a voltage-dependent calcium channel blocker (diltiazem)and an intraperitoneal CaCl2 injection. Adding Cd2+ orMg2+ to thewater or injecting the fish with theCa2+-solution resulted in decreased Co2+ andCa2+ uptake rates. Addition of La3+ reducedCa2+ and Co2+ uptake rates except forCo2+ uptake in the gills. Diltiazem displayed only aninconsistent, concentration-independent blocking of the uptake of bothCo2+ and Ca2+. All inhibitors which inhibitCa2+ uptake also inhibit Co2+ uptake. However, aclear difference in the degree of inhibition of uptake of both elements isobserved. Two possible explanations are suggested (1) Co2+ andCa2+ are both transported through the gills via the sametransport system or (2) the calcium transport system is not the only systeminvolved in the transport of Co2+.  相似文献   

7.
The objective of the present study was to confirm previous results on the mediation of GnRH signal in tilapia by providing evidence from experiments in cultured pituitary cells and from perifusion experiments using a GnRH-antagonist. After 4 days in culture under identical conditions, cells taken from pituitaries of fish maintained at 26°C were more sensitive to GnRHa ([D-Ala6, Pro9-NEt]-LHRH) than those taken from fish maintained at 19°C. Cells from female pituitaries were more responsive than those from males. taGTH release in culture was augmented by Ca2+ ionophore (A23187; 1–100 μM) or ionomycin (0.02–10 μM). The response of perifused pituitary to GnRH was reduced by nimodipine (1–10 μM) indicating that Ca2+ influx via voltage-sensitive Ca2+ channels is involved in the stimulation of GTH release. Activation of protein kinase C by OAG (1-oleyl-2-acetyl glycerol; 0.16–160 μM) or TPA (1-O-tetra-decanoyl phorbol-13-acetate; 1.25–125 nM) resulted in a dose-dependent stimulation of taGTH release from cultured cells. Arachidonic acid (0.33–330 μM) also augmented the release of taGTH from the culture. Four sequential pulses of sGnRH (100 nM) at 2h intervals resulted in surges of taGTH release from perifused pituitary fragments; the surges were similar in magnitude with no signs of desensitization. Sequential stimulation with graded doses of sGnRH (0.1 nM to 1 μM) in the presence of GnRH-antagonist ([Pro2,6, Trp3]-GnRH) resulted in an attenuation of taGTH release. However, the GnRH-antagonist did not alter the pattern of forskolin-stimulated GTH release, indicating that forskolin stimulation is exerted at the level of the adenohypophyseal cells. It is concluded that, as in other vertebrates, the transduction of GnRH stimulation of GTH release involves Ca2+ influx through voltage-sensitive Ca2+ channels, mobilization of the ion from intracellular sources, arachidonic acid and activation of PKC. Adenylate cyclase-cAMP system us also involved in the mediation but its relationship with other transduction cascades requires further investigations.  相似文献   

8.
The presumptive Na+/H+ exchange sites of trout and eel erythrocytes were quantified using amiloride-displaceable 5-(N-methyl-N-[3H]isobutyl)-amiloride (3H-MIA) equilibrium binding to further evaluate the mechanisms of i) hypoxia-mediated modifications in the trout erythrocyte -adrenergic signal transduction system and ii) the marked differences in the catecholamine responsiveness of this system between the trout and eel. MIA was a more potent inhibitor of both trout apparent erythrocyte proton extrusion (IC50 = 20.1 ± 1.1 mol l–1, N = 6) activity (as evaluated by measuring plasma pH changes after addition of catecholamine in vitro) and specific 3H-MIA binding (IC50 = 257 ± 8.2 nmol l–1, N = 3) than amiloride, which possessed a proton extrusion IC50 of 26.1 ± 1.6 mol l–1 (N = 6) and a binding IC50 of 891 ± 113 nmol l–1 (N = 3). The specific Na+ channel blocker phenamil was without effect on adrenergic proton extrusion activity or specific 3H-MIA binding. Trout erythrocytes suspended in Na+-free saline and maintained under normoxic conditions possessed 37,675 ± 6,678 (N = 6) amiloride-displaceable 3H-MIA binding sites per cell (Bmax, presumptive Na+/H+ antiporters) with an apparent dissociation constant (KD) of 244 ± 29 nmol l–1 (N = 6). Acute hypoxia (PO2 = 1.2 kPa; 30 min) did not affect the KD, yet resulted in a 65% increase in the number of presumptive Na+/H+ antiporters. Normoxic eel erythrocytes, similarly suspended in Na+-free saline, possessed only 17,133 ± 3,716 presumptive Na+/H+ antiporters (N = 6), 45% of that of trout erythrocytes, with a similar KD (246 ± 41 nmol l–1, N = 6). These findings suggest that inter- and intra-specific differences in the responsiveness of the teleost erythrocyte -adrenergic signal transduction system can be explained, in part, by differences in the numbers of Na+/H+ exchange sites.  相似文献   

9.
壳聚糖对Cd2+和Pb2+的吸附作用   总被引:1,自引:1,他引:0  
为开发新型吸附剂,降低重金属对水体的污染,研究了壳聚糖对Cd2+和Pb2+的吸附条件,探讨了pH、温度、反应时间、壳聚糖添加量和金属离子初始浓度等因素对壳聚糖吸附性能的影响。结果表明,pH 7~8和pH 5~6条件下壳聚糖对Cd2+和Pb2+的吸附能力最强;低温有利于壳聚糖的吸附;在8 h时壳聚糖对Cd2+的吸附容量达到最大,而对Pb2+的吸附在实验时间内是随着吸附时间的延长而增大;随着壳聚糖添加量的增加,其对Cd2+和Pb2+的吸附能力也增强;初始金属离子浓度的变化对Cd2+的影响不大,而在高的金属浓度下对Pb2+的吸附率显著降低。壳聚糖对Cd2+、Pb2+的吸附动力学和热力学分别符合Lagergren方程二级吸附模型和Langmuir吸附方程。研究表明,壳聚糖对不同金属离子的吸附能力不同,在单一金属溶液中,壳聚糖对Cd2+的吸附能力要强于对Pb2+的吸附能力。系统地研究了壳聚糖对Cd2+和Pb2+的吸附条件及性能,为壳聚糖作为重金属吸附剂的应用提供理论依据。  相似文献   

10.
为探讨克氏原螯虾体内重金属Cd2+残留的脱除方法,采用基础饲料中添加制备的蛋白水解肽-Fe2+配合物(TPH-Fe2+)进行饲喂,检测螯虾不同组织器官中Cd2+含量变化情况。结果显示,染毒后螯虾不同器官中Cd2+富集量依次为内脏团>肠>鳃>腹部肌肉>螯足肌肉,且在0~12 d自然净化过程中,无显著性下降趋势。添加400、800和1 200 mg/kg TPH-Fe2+饲喂螯虾,内脏团、鳃、肠及腹部肌肉中Cd2+含量均有不同程度下降;饲喂12 d后,螯虾不同器官中Cd2+脱除率为肠>内脏团>鳃>腹部肌肉,脱除率分别为40.60%、36.13%、33.36%和10.15%;TPH-Fe2+对螯虾螯足肌肉中Cd2+含量无显著性影响。研究表明,蛋白水解肽-Fe2+配合物能有效脱除螯虾体内Cd2+残留,可作为一种螯虾养殖饲料添加剂在基础饲料中加以应用。  相似文献   

11.
The subject of acute injury, apoptosis and canceration of animals induced by heavy metal ions has been one of the hotspots studied worldwide. However, the exact molecular mechanism of Cd-induced carcinogenicity remains largely unclear, and how to relieve the toxicity in vivo has rarely been reported. For this paper, we have investigated the mechanism of Cd2+ on DNA cleavage and Ca2+ on DNA repair in the liver of silver crucian carp (Carassius auratus gibelio) by agarose gel electrophoresis methods and by estimating biochemical indexes. Our results show that Cd2+ induces the classical laddering degradation of DNA in vivo and that DNA cleavage is repaired after injection with Ca2+ under various Cd2+ concentrations. DNA cleavage caused by Cd2+ is due to the activation of deoxyribonuclease (DNase) and the accumulation of reactive oxygen species (ROS). Furthermore, Cd2+ destroys the antioxidant system, which diminishes the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), causing an increase of the lipid peroxidation (LPO) level, respectively. However, after the liver is injected with Ca2+ under various Cd2+ concentrations, the DNase activity, the ROS generating rate and the LPO level are obviously reduced, the activities of SOD, CAT, and POD are greatly increased. At the same time, ROS production and removal recoves its balance. The results show that Ca2+ can relieve the toxicity of Cd2+ in silver crucian carp.  相似文献   

12.
Biochemical procedures developed to isolate plasma membranes from the branchial epithelium of rainbow trout (Oncorhynchus mykiss) yield membrane fractions that are specifically enriched in the plasma membrane marker enzyme Na+/K+-ATPase. As the bulk of the branchial Na+/K+-ATPase is assumed to be confined to the mitochondria-rich chloride cells, such membrane preparations must contain the essence of the enzymatic machinery of the chloride cells. Basal Na+ activity in branchial (chloride) cells is around 10 millimolar and, accordingly, we find a Km for Na+ of the Na+/K+-ATPase of 13 millimolar, indicating that the enzyme may be regulated by changes in cytosolic sodium. The Na+-gradient across the serosal plasma membrane created by this pump provides energy for 3Na+/Ca2+-exchange and bumetanide-sensitive Na+/K+/2Cl--cotransport. Here we further postulate the presence of a Na+/Cl--cotransporter, indicated by thiazide-sensitive, bumetanide-insensitive transport of Na+ and Cl-; this cotransporter activity awaits the characterization of its kinetics. The Na+/Ca2+-exchanger has kinetic characteristics compatible with a regulatory role of cytosolic Na+ in the activity of this carrier. Both Na+/Ca2+-exchange and Ca2+-ATPase activity may contribute to transport of Ca2+, the former having lower affinity for calcium but a higher capacity than the latter carrier. The Na+/K+/2Cl--cotransporter has kinetics that favor a regulatory role for plasma K+ in the activity of this carrier. Seawater adaptation leads to increased activity of cotransporter molecules in the plasma membrane fractions (the activity increases relative to that of the Na+/K+-ATPase) and this may reflect a function in Cl--extrusion performed by the chloride cells in a seawater environment. A function for the cotransporter in the gills of freshwater fish may be the regulation of cell volume.  相似文献   

13.
The main purpose of this study is to discuss the effect of Cd+2, Cr+3 and Se metals on biochemical parameters in liver tissue of Oncorhynchus mykiss. The rainbow trout were exposed to heavy metal stress (Cd+2, Cr+3) at 2 ppm dosage. The present study was undertaken to determine the protective effect of selenium treatment at the same dosage (2 ppm) on some biochemical parameters. The activity of catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and the changes in levels of malondialdehyde (MDA) from biochemical parameters were determined in liver tissue of the fish groups exposed to heavy metals, especially for the selenium-applied groups. Results of this study showed that the activities of CAT, GSH-Px and SOD in the tissues of fish exposed to the stress of Cd+2 and Cr+3 were significantly lower than the control groups (P < 0.05). Meanwhile, the closer values to the control groups were obtained in selenium-added groups (Cr+3 + Se+4, Cd+2 + Se+4). For the level of MDA, the last production of lipid peroxidation showed increases (< 0.05) in the groups exposed to the metal stress, whereas significant decreases were obtained in selenium-applied groups. The result of the statistical evaluation showed that the negative effects occurring in the biochemical parameters of the applied groups exposed to the toxicity of heavy metal were significantly eliminated (P < 0.05) as a result of selenium treatment.  相似文献   

14.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

15.
The mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP) action on goldfish growth hormone (GH) release were investigated by examining GH release responses from dispersed goldfish pituitary cells to a synthetic mammalian (m)PACAP38 peptide. It was established that GH release stimulated by 2-h exposure to mPACAP38 was concentration-dependent, attenuated by the PACAP receptor antagonist mPACAP6–38, and subject to neuroendocrine modulation by somatostatin. Maximal mPACAP38-stimulated GH release was not additive to the responses elicited by either the adenylate cyclase activator forskolin or the cyclic (c)AMP analog 8-bromo-cAMP. The GH responses to mPACAP38, forskolin and 8-bromo-cAMP, either alone or in combination, were abolished by H89, a protein kinase A (PKA) inhibitor. SQ22536, an adenylate cyclase inhibitor, attenuated forskolin- and mPACAP38-stimulated GH release. In contrast, mPACAP38-stimulated GH release were additive to the responses to two protein kinase C (PKC) activators and unaffected by two PKC inhibitors. These results suggest that the stimulatory action of PACAP on GH secretion is mediated through a cAMP- / PKA-dependent mechanism, whereas the involvement of PKC appears unlikely. The ability of mPACAP38 to further enhance maximal GnRH (PKC)-dependent GH release, but not dopamine D1 agonist (PKA)-dependent GH secretion, is consistent with this hypothesis. A possible involvement of Ca2+ in PACAP action is also suggested. Two inhibitors of voltage-sensitive Ca2+ channel reduced the GH responses to mPACAP38 in static incubation; conversely, mPACAP38 increased intracellular [Ca2+] in identified, single goldfish somatotropes.  相似文献   

16.
The osmoregulation capabilities of 7-month-old juvenile Chinese sturgeon (Acipenser sinensis Gray) (128.8 ± 15 g) transferred directly from fresh water (0‰, 46 mOsmol kg−1) to brackish water (10‰, 273 mOsmol kg−1) were studied over a 20-day period. Changes in serum osmolarity, chloride (Cl), sodium (Na+), potassium (K+) and calcium (Ca2+) ion concentrations, as well as gill and spiral valve Na+,K+-ATPase activities were measured at 3, 12, 24, 72, 216 and 480 h after transfer to BW. The serum osmolarity and ion concentrations (Na+, Cl and Ca2+) increased immediately after the transference to BW, reaching maximum at 24 h and returned to a new steady state at 216 h, while the FW control group maintained basal levels which showed lower (P < 0.05) than the BW group. Gill Na+,K+-ATPase activity of BW group exhibited an abrupt decrease in the first 3 h after transfer, but began to increase at 3 h, reaching a peak value at 24 h, and returned to a new steady state at 216 h. The differences between gill Na+,K+-ATPase activity of BW and FW fish were significant (P < 0.05) after 12 h. In contrast, Na+,K+-ATPase activity of the spiral valve showed transient increase after transference from FW to BW, and then decreased rapidly at 3 h, reaching the lowest at 24 h after transference. At 216 h after exposure to BW, Na+,K+-ATPase activities of the spiral valve increased slowly to the levels of FW control. The results of our study indicate the existence of hyposmoregulatory adaptive mechanisms in 7-month-old juvenile Chinese sturgeon which enable this fish to acclimate itself successfully to brackish water.  相似文献   

17.
A 50-day experiment was conducted to investigate the effects of constant Ca2+ concentration in salinity fluctuations on growth and energy budget of juvenile Litopenaeus vannamei. The salinity and Ca2+ concentration of control group S0 were kept 30‰ and 385 mg l−1, respectively throughout the experiment while the ranges of salinity fluctuations of the treatment groups S5 and S5C, S10 and S10C, S15 and S15C, S20 and S20C were 5, 10, 15, and 20‰, respectively. The Ca2+ concentration of the treatment groups S5, S10, S15, and S20 (salinity fluctuation groups) changed with salinities, while the Ca2+ concentration of the treatment groups S5C, S10C, S15C, and S20C (constant Ca2+ concentration groups) was kept 385 mg l−1 during the experiment. The results were as follows: (1) There were no significant differences in SGR of shrimp in salinity fluctuation groups (P > 0.05); But shrimp in the groups S15C and S20C had significantly higher SGR than those in the groups S5C and S0 in constant Ca2+ concentration groups (P < 0.05); (2) Results of the t test showed that significant differences in SGR were also found between S15 and S15C (P = 0.012), and between S20 and S20C (P = 0.013); (3) The shrimp in groups S15C and S20C deposited significantly more energy for growth and spent significantly less energy in respiration than those in groups S15 and S20 (P < 0.05), respectively. These results showed that compared with constant salinity and fluctuating salinities, the growth performance of shrimp under constant Ca2+ concentration in large ranges of salinity fluctuations could be better.  相似文献   

18.
A phospholipase A2 was purified 55,000-fold in a yield of 10% from the lipid-free extract of powder of the pyloric caeca of red sea bream to near homogeneity by sequential column chromatography on S-sepharose fast flow, butyl-cellulofine, Asahipak ES-502C cation-exchange HPLC, TSK gel G3000SW gel-filtration HPLC, and Asahipak ODP-50 reversed-phase HPLC. The final preparation showed a single band with the apparent molecular mass of 14 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, and an estimated specific activity was 717 µmol min-1 mg-1 protein. The purified enzyme had a pH optimum in the range of pH 8.0–9.0 and required the presence of both 8 mM of Ca2+ and from 2 to 10 mM of sodium deoxycholate for its maximal activity, using 2 mM of phosphatidylcholine as a substrate. The purified enzyme preferentially hydrolyzed the 2-acyl ester bonds of both phosphatidylglycerol and phosphatidylcholine in the presence of sodium deoxycholate, followed in order by phosphatidylethanolamine and phosphatidyl-serine. In contrast to porcine pancreatic PLA2, pyloric caeca PLA2 hydrolyzed mixed-micellar phosphatidylcholine substrate effectively, regardless of the kinds of bile salts used. These results indicate that Ca2+-dependent low molecular mass PLA2, so called secretory PLA2, occurs in the pyloric caeca of red sea beam.  相似文献   

19.
An 8 weeks feeding trial was conducted to investigate the effect of dietary cerium (Ce) and its complex with chitosan oligosaccharide (COS‐Ce) on growth performance and cadmium (Cd) accumulation of turbot, Scophthalmus maximus L. under Cd stress. The basal diet (Diet 0) was formulated without Cd and cerium as the control. Seven other experimental diets (Diets 1–7) were formulated with supplementation of 50 mg Cd2+/kg feed, 50 mg Cd2+/kg and 50 mg Ce3+/kg feed, 50 mg Cd2+/kg and 100 mg Ce3+/kg feed, 50 mg Cd2+/kg and 200 mg Ce3+/kg feed, 50 mg Cd2+/kg and 50 mg COS‐Ce/kg feed, 50 mg Cd2+/kg and 100 mg COS‐Ce/kg feed, and 50 mg Cd2+/kg +200 mg COS‐Ce/kg feed. Results of the present study showed that, compared with the control group, the condition factor in fish fed the diet with 50 mg Cd2+/kg feed (Diet 1) was significantly lower, whereas the Cd concentration in liver and kidney of fish fed the diet with 50 mg/kg Cd2+ (Diet 1) was significantly higher (< 0.05). The high Cd accumulation of fish fed diets with sole 50 mg/kg Cd (Diet 1) could be significantly decreased by 51.72% after supplementation of 200 mg COS‐Ce/kg in the diet (Diet 7). These results suggested that elevated COS‐Ce could effectively protect against dietary Cd accumulation in turbot.  相似文献   

20.
Tilapia larvae were exposed to 0 (control), 50 (50-Cd) or 100 (100-Cd) μg l-1 cadmium for 4 days and then transferred to cadmium-free fresh water for 3 days of detoxification. Total length and weight, calcium influx and total body calcium and cadmium content were examined at various times during detoxification. All the groups grew normally with regards to total length and body weight. Within the first 12h of detoxification the 50- and 100-Cd exposed groups released cadmium at the similar rate of about 24 ng mg-1 h-1 (or 140 ng larva-1 h-1). Later, however, this rate declined to only 4–16% of the initial level. Calcium influx in the control group showed a 10–26% increase during the detoxification period. Calcium influx in the 50-Cd group increased by about 280% and reached it peak at 12h. Calcium influx in the 100-Cd group increased by 440% and did not peak until 24h after transfer. After peaking, the influxes in both 50- and 100-Cd groups declined to the level of control at the end of the experiment. Calcium contents in 50- and 100-Cd groups increased more rapidly than that in control group within first 24h of the detoxification period. However the rate of increase in calcium content in three groups was the same after 24h. The changes in calcium influx appeared to be correlated with those in calcium content, and these suggested that tilapia larvae regulate the mechanism of calcium balance to compensate for the reduced calcium level in the body. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号