首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
One of the major problems in the shrimp culture industry is the difficulty in producing high-quality shrimp larvae. In larviculture, quality feeds containing a high content of highly unsaturated fatty acids (HUFA) and ingredients that stimulate stress and disease resistance are essential to produce healthy shrimp larvae. In the present study, Penaeus monodon postlarvae (PL15) were fed for 25 days on an unenriched Artemia diet (control; A) or on a diet of Artemia enriched with either HUFA-rich liver oil of the trash fish Odonus niger (B), probionts [Lactobacillus acidophilus (C1) or yeast-Saccharomyces cerevisiae (C2)] or biomedicinal herbal products (D) that have anti-stress, growth-promoting and anti-microbial characteristics. P. monodon postlarvae fed unenriched Artemia exhibited the lowest weight gain (227.9 ± 8.30 mg) and specific growth rate (9.95 ± 0.05%), while those fed the HUFA-enriched Artemia (B) exhibited the highest weight gain and specific growth rate (362.34 ± 12.56 mg and 11.77 ± 0.08%, respectively). At the end of the 25-day rearing experiment, the shrimp postlarvae (PL40) were subjected to a salinity stress study. At both low and high (0 and 50‰) salinities, the group fed the control diet (A) experienced the highest cumulative mortality indices (CMI) 935.7 ± 2.1 and 1270.7 ± 3.1, respectively. Those fed diet D showed the lowest stress-induced mortality, and CMI were reduced by 31.1 and 32.3% under conditions of low and high salinity stress, respectively. A 10-day disease challenge test was conducted with the P. monodon postlarvae (PL40–PL50) by inoculating the shrimp with the pathogen Vibrio harveyi at the rate of 105–107 CFU/ml in all rearing tanks. P. monodon postlarvae fed probiont-encapsulated Artemia diets (C1 and C2) exhibited the highest survival (94.3 and 82.3%, respectively) and lowest pathogen load (V. harveyi) in hepatopancreas (5.2 × 102 ± 9.0 × 10 and 4.6 × 102 ± 9.0 × 10 CFU g−1, respectively) and muscle (2.0 × 102 ± 6 × 10 and 1.7 × 102 ± 8.6 × 10 CFU g−1, respectively) tissues. The shrimp that were fed the unenriched Artemia (Control; A) showed the lowest survival (26.33%) and highest bacterial load in the hepatopancreas (1.0 × 105 ± 5 × 103 CFU g−1) and muscle (3.6 × 104 ± 6 × 102 CFU g−1). The shrimp fed the herbal product (D)-enriched Artemia also exhibited enhanced survival and reduced V. harveyi load in the tissues tested compared to the control diet (A) group. The results are discussed in terms of developing a quality larval feed to produce healthy shrimp larvae.  相似文献   

2.
Enrichment of Artemia nauplii with a known probiotic yeast Saccharomyces boulardii (SB) and its role in enhancing resistance against the pathogen Vibrio harveyi was investigated. SB was cultured, then fed to instar II Artemia nauplii in three different treatments; 102 (T1), 103 (T2) and 104 (T3) colony forming units (CFU) per ml in triplicate. The algae Nanochloropsis sp. was used as control diet. Survival and total count of CFU nauplii−1 was observed on different media (Sabouraud, for enumerating yeasts, thiosulphate citrate bile salts sucrose, for enumerating Vibrio and seawater agar, for enumerating total aerobic flora) for each replication. Enhanced survival of nauplii was observed in treatments as compared to control. Results indicated that enrichment of SB in Artemia nauplii proceeded in a linear fashion, and up to 3500 CFU of SB could be detected in one nauplii at 104 CFU ml−1 treatment. No conclusive trend could be observed in the count of Vibrio and total aerobic flora due to treatment. Enriched nauplii were then challenged with the pathogen V. harveyi for 24 and 48 h at a concentration of 6.1 × 106 CFU ml−1. The survival counts at 48 h showed that the resistance of the nauplii was significantly (P < 0.01) improved in those fed with 104 CFU  ml−1 SB (90% survival rate after 48 h of challenge versus less than 40% for the infected control group without SB and treatments T1 and T2). This study shows that SB, which has been used for the first time in an aquatic live feed organism, has a profound beneficial effect on the nauplii by increasing its resistance to a pathogenic Vibrio infection. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Results from three larval Senegalese sole (Solea senegalensis) feeding trials using non-enriched Artemia and Artemia enriched with Super HUFA®, Arasco®, sunflower oil and microalgae are presented and the effects on larval survival, growth and fatty acid (FA) composition are reported. The FA profile of Senegalese sole eggs was analysed to gather information about the nutritional requirements of the early larval stages and a quite high DHA/EPA ratio (4.3) was found. However, there was no evidence of a high dietary demand for DHA or EPA, given that no relationship was found between dietary HUFA concentration and larval growth and survival. When larvae were fed non-enriched Artemia a significantly better growth and comparable survival were obtained than with Artemia enriched with Super HUFA® (containing the highest HUFA level and DHA/EPA ratio). The FA profiles of the larvae generally reflected those of their diets. DHA was an exception, as it was present in high proportions, even in larvae fed DHA-deficient prey. Total FAME concentration decreased during larval development, with SFA, MUFA and PUFA being equally consumed; HUFA appeared to be less used, with its relative concentration being either kept constant (particularly EPA and ARA) or increased (DHA). A specific requirement for ARA in the first larval stages could not be confirmed but it was always present in considerable amounts, even in larvae fed an ARA poor diet.  相似文献   

4.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

5.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

6.
It is not known whether rotifers or Artemia nauplii are the best first food for South African mud crab Scylla serrata larvae. In order to test this, larvae were fed with five different test diets. These were rotifers for the first 8 days and newly hatched EG® type Artemia nauplii (San Francisco Bay) from day 6 onwards (treatment R6A); newly hatched EG® type Artemia nauplii throughout the rearing period (treatment EG); newly hatched Vinh-Chau strain (Vietnam) Artemia nauplii throughout the rearing period (treatment VC); decapsulated cysts of EG® type Artemia throughout the rearing period (treatment DECAP); or decapsulated cysts supplemented with low densities of Artemia EG type Artemia nauplii (treatment MIX). Two experiments were conducted approximately 1 month apart using larvae from two different female crabs. Although results showed it is possible to rear S. serrata larvae through metamorphosis on Artemia nauplii exclusively, larval performance (development, survival and successful metamorphosis) was enhanced by the inclusion of rotifers as a first feed.No significant difference in performance was recorded between larvae fed on the two strains of Artemia nauplii. Larvae fed on decapsulated cysts in treatments DECAP and MIX performed poorly, but there were indications that decapsulated cysts and other inert diets may have potential as supplements to live food in the rearing of S. serrata larvae.  相似文献   

7.
The suitability of the harpacticoid copepodTisbe holothuriae as a diet for larval and juvenile Dover sole (Solea solea) was assessed by rearing groups of sole for 42 days under a range of dietary regimes. Larval sole, approximately 1 week old, were reared onTisbe, Artemia, or a mixedTisbe-Artemia diet for 13 days. No significant differences in length between sole larvae from any diet were found after this time, but larvae offeredArtemia alone showed a significantly higher frequency of malpigmentation than those offered the other diets. After metamorphosis (day 16), survivors of this experiment were reared for a further 29 days on various diets to give the following dietary sequences:Tisbe-fed larvae, fed onArtemia as juveniles (Tis.-Art.);Artemia-fed larvae, fed onArtemia as juveniles (Art.-Art.);Artemia-fed larvae, fed onTisbe as juveniles (Art.-Tis.) and mixed diet fed larvae, fed on a mixed diet as juveniles (AT-AT). At the end of this period AT-AT and Tis.-Art.-fed juveniles were significantly larger than those on the Art.-Art. dietary regime. Juveniles from the Tis.-Art. dietary regime consumed more prey items than the Art.-Art group. AT-AT juveniles consumed similar amounts of food to Art.-Art. juveniles but were significantly larger after 29 days culture. This was attributed to the presence ofTisbe in their diet. Overall, the best larval and juvenile diet appeared to be a mixed diet throughout the culture period.  相似文献   

8.
Performance of phyllosoma of thesouthern rock lobster (Jasus edwardsii)was examined after feeding Artemia-baseddiets. Survival and growth of newly-hatchedlarvae cultured to Stage III were lower(p < 0.05) when fed 0.8 mm Artemia than1.5 mm or 2.5 mm Artemia alone or 1.5 mmArtemia in combination with pieces ofmussel (Mytilus edulis planulatus) gonad.This could not be attributed to deficiencies inthe composition of fatty acids but appeared tobe due to the inability of larvae to capturesufficient appropriate-sized, enrichedArtemia for their nutritional requirements.There was an indication that survival andgrowth were higher between Stages III and Vwhen fed 2.5 mm Artemia than 1.5 mmArtemia alone or in combination with musselpieces. However, Stage VI larvae grew to asimilar size at Stage VIII when fed 1.5 mm or2.5 mm Artemia. Unexpectedly, larvae fedthe combination of 1.5 mm Artemia plusmussel supplement had lower survival than foundpreviously, and generally lower than when fed 1.5 mm Artemia alone. This was despitean apparent nutritional profile (lipid contentand fatty acid composition) of mussel more akinto that of newly-hatched phyllosoma thanenriched Artemia. On the other hand,survival and growth to Stage VIII were higherwhen larvae were fed alginate pelletscontaining Artemia than when fed 1.5 mmor 2.5 mm Artemia alone.  相似文献   

9.
Three commercially available fatty acid enrichment emulsions (DC Selco, DC DHA Selco and DC Super Selco) were used to enrich Artemia nauplii fed to seahorse, Hippocampus sp. fry. The emulsions varied in their n-3 highly unsaturated fatty acid (HUFA) composition. Total n-3 HUFA content ranged from 200 to 450mgg-1 between the three emulsions while levels of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) ranged between 47–220 and 80–190mgg-1, respectively. Survival and growth of seahorses at the end of the 30 day growth trial were greater in treatments receiving enriched Artemia. Seahorses receiving Artemia enriched with DC DHA Selco and DC Super Selco showed significantly (p < 0.05) greater mean survival (71.6 ± 6.0% and 78.3 ± 6.0%, respectively) than those receiving unenriched Artemia (48.3 ± 6.0%). Mean standard length was also significantly greater (p < 0.05) in fry fed DC DHA Selco and DC Super Selco enriched Artemia (20.2 ± 0.3 and 19.7 ± 0.3mm, respectively) compared to those fed unenriched Artemia (18.1 ± 0.3mm). The results show that dietary n-3 HUFA are essential for optimal growth and survival of Hippocampus sp. and, based on the fatty acid compositions of the enriched Artemia used in this study, indicate that the level of dietary DHA supporting optimal growth and survival is greater than 9.3mgDHAg-1 dry weight.  相似文献   

10.
The present study intended to evaluate the effects of early introduction of inert diet in lipid digestibility and metabolism of sole, while larval feed intake, growth and survival were also monitored. Solea senegalensis larvae were reared on a standard live feed regime (ST) and co-feeding regime with inert diet (Art R). Trials using sole larvae fed with Artemia enriched with two different lipid emulsions, containing glycerol tri [1-14C] oleate (TAG) and L-3-phosphatidylcholine-1,2-di-[1-14C] oleoyl (PL), were performed at 9 and 17 days after hatching (DAH) to study lipid utilization. Co-feeding did not affect sole survival rates (ST 59.1 ± 15.9%; Art R 69.56 ± 9.3%), but was reflected in significantly smaller final weight at 16 DAH (ST 0.71 ± 0.20; Art R 0.48 ± 0.14 mg). Higher feed intake was observed in sole larvae fed on Artemia enriched with labeled PL at 9 DAH but not at 17 DAH. At 17 DAH, the smaller larvae (Art R treatment) ingested proportionally more Artemia in weight percentage, independently of enrichment. At 9 DAH lipid digestibility was equal among treatments and higher than 90%, while at 17 DAH it was higher in ST treatment (around 73%) compared to the Art R group (around 66%). Lipid retention efficiency at 9 DAH was higher in the Art R treatment, reaching values of 50%, while these values almost duplicated at 17 DAH, ranging up to 80% in both treatments without significant differences. These results show that co-feeding of live feed and inert diet from first-feeding in Senegalese sole has a toll in terms of growth and lipid digestibility but does not seem to compromise lipid metabolic utilization.  相似文献   

11.
Heterobranchus longifilis larvae were reared over a 35 d period to evaluate the effects of stocking densities and feeding regimes on growth and survival. In experiment 1, larvae (12.3?±?2.1 mg) were stocked into glass aquaria at densities of 1, 2, 5, 10, 15, 20, and 25 larvae L?1. Larvae were fed on Artemia nauplii ad libitum. Significant variations in terms of growth performance and feed utilization occurred at all levels of density treatments. Specific growth rate (SGR), body weight gain (BWG), and feed efficiency (FE) of the larvae decreased significantly as density increased. However, survival rate increased with the increase of stocking density. In experiment 2, larvae (13.4?±?1.1 mg) stocked at a density of 15 larvae L?1, in the same conditions as experiment 1, were fed on three different regimes: Artemia nauplii; 35%?protein beef brain; and 35%?protein commercial catfish feed (CN+). SGR, BWG, and coefficient of variation (CV) of larvae fed on Artemia nauplii were significantly higher than those fed on beef brain and CN+. The survival rate of larvae fed on beef brain was significantly higher (88.40?±?9.75%) than those of Artemia (69.21?±?6.69%) and CN+ (40.40?±?6.22%). The results of this study suggest that the optimum stocking density is 15 larvae L?1 and the beef brain can be used as alternative feed to Artemia in rearing H. longifilis larvae.  相似文献   

12.
An important constraint to the commercial rearing of the marine ornamental shrimp Lysmata debelius is high larval mortality during early stages due to inappropriate procedures of larval collection and not feeding a live prey before one day elapsed after hatching. This incorrect feeding practice is commonly adopted in larval rearing of L. debelius and other ornamental marine shrimps because it is wrongly assumed that reserves of the newly hatched are enough for the first 24 h of life. Present work demonstrates that captive newly hatched L. debelius larvae ingest microalgae within minutes after hatching. When fed solely with Artemia nauplii, they have acceptable survival rates with stocking densities at or below 50 larval L–1; but when nauplii are combined with microalgae, survival is further improved to zoea 2 as initial mortality is reduced, and higher stocking densities are supported (up to 75 larvae L–1). The microalgae used were Rhinomonas reticulata, Skeletonema costata and Tetraselmis chuii. Higher survival through metamorphosis to zoea 2 was always observed for groups fed combinations of microalgae including Tetraselmis chuii. It is recommended that, larval collection methods ensure that larvae are fed microalgae within 2–3 h of release.  相似文献   

13.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

14.
The relative contributions of live Artemia metanauplii and an inert diet for growth of Senegalese sole larvae and postlarvae were assessed through the analysis of carbon stable isotopes ratios (δ13C) in both diets and whole larval tissue. Larvae were reared on four dietary regimes: 100% live prey (rotifers and Artemia), 100% inert formulated diet and two co-feeding regimes of 70:30 and 30:70 ratios of Artemia and inert diet, respectively. Larvae from the live food regime and both co-feeding regimes showed a steep increase in δ13C from 10 days after hatching (DAH) as a result of the onset and continuation of Artemia consumption. From 12 DAH fish larvae from all the regimes showed significant isotopic differences as their δ13C increased to final asymptotic values of − 15.1, − 15.6 and − 16.3‰ in the live food, 70:30 and 30:70 regimes, respectively. Carbon turnover rates in larvae from both live food and co-feeding regimes were relatively high (0.071 to 0.116 d− 1) but more than 90% of the observed change in fish tissue isotopic values was accounted for by the retention of carbon in new tissue growth. A two-source, one-isotope mixing model was applied to estimate the nutritional contribution of Artemia and inert diet to postlarvae growth in the co-feeding regimes. At 23 DAH, the relative contribution of live and inert diets to tissue growth in larvae was respectively, 88 and 12% for the 70:30 co-feeding regime and 73 and 27% for the 30:70 co-feeding regime. At 17 DAH, the estimated proportion of tissue carbon derived from the inert diet was higher at 23 and 38% for the 70:30 and 30:70 regimes, respectively. The results suggest that co-feeding regimes in Solea senegalensis larvae may be adjusted to meet ontogenetic changes in the capacity for larvae to utilise inert diets. The contrasting levels of carbon isotope discrimination between diet and tissue in larvae reared on either 100% live feed or 100% inert diet indicate relatively poor utilization of nutrients from the inert diet. The use of isotopic discrimination factors as potential indicators of the digestive physiological performance of a consuming organism in regards to its diet is discussed.  相似文献   

15.
The polysaccharide – fucoidan was extracted from brown seaweed Sargassum wightii and its antibacterial activity was screened by agar well diffusion method. The maximum zone of inhibition observed was 15.66 mm in 20 mg mL?1 concentration against Vibrio parahaemolyticus. The Minimum Inhibitory Concentration (MIC) of the fucoidan was 12 mg mL?1 against V. parahaemolyticus. The fucoidan was then enriched with Artemia nauplii at four different concentrations such as 100, 200, 300 and 400 mg L?1 for 12 h. The enriched Artemia nauplii were fed to Penaeus monodon post‐larvae for 20 days and the growth performance was assessed. The weight gain and SGR of the control group were 0.2432 g and 15.78%, respectively. But, in experimental groups fed with fucoidan enriched Artemia nauplii, the weight gain and SGR were increased and were respectively ranged from 0.2602 to 0.3161 g and from 16.11 to 17.05%. The P. monodon post‐larvae were challenged with V. parahaemolyticus for a period of 30 days showed a reduction in mortality percentage of experimental groups over the control group and it was ranged between 36.97 and 89.86%. During the challenge test, the V. parahaemolyticus load was also enumerated from the infected shrimp at every 10 day intervals. In the control group, the Vibrio load showed a linear increase in hepatopancreas and muscle tissues from 10th to 30th days of challenge test, whereas in the experimental groups, the Vibrio load established a declining trend with the advancement of challenged test.  相似文献   

16.
To improve the nutritional quality of live foods and dry feeds ordinarily used for the seed production of amberjack Seriola dumerili, the nutrient contents of rotifers, Artemia nauplii and commercial feeds used in two larval production stations were evaluated. For comparison of the nutrient contents, artificially produced larvae, wild-caught juveniles and wild zooplankton samples were also analyzed. The proportions of 22∶6n-3 in the polar lipid of the cultured larvae increased by feeding the dry feeds. The taurine contents of the cultured larvae reflected the contents of their foods (rotifers<dry feed<Artemia nauplii). The taurine content and the proportion of 22∶6n-3 in Acartia spp. were higher than in foods fed to the larvae. These parameters in the wild juveniles were higher than the cultured ones. The A/E ratios [(each essential amino acid/total essential amino acids)×1000] of the total amino acids of the live foods and dry feeds were similar to those of the cultured larvae, except for the lower ratios of histidine, arginine, threonine and lysine in the live foods. The mucosal folds of the intestine of the cultured larvae did not show typical signs of dietary phospholipid deficiency. These results suggest that requirements of nutrients such as 22∶6n-3 and taurine should be determined for mass production of amberjack seeds.  相似文献   

17.
Herbs with known antibacterial characteristics were chosen and extracted with different polar and non-polar solvents and screened against five different shrimp pathogens: Pseudomonas aeruginosa, Staphylococcus aureus, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. Five different diets were prepared by incorporating equal proportions of these five herbal extracts at increasing concentrations: Control (0), HD1 (200), HD2 (400), HD3 (600), and HD4 (800 mg/kg of diet). Diets were individually fed to the Penaeus monodon post larvae (PL 25) for 30 days. At 10-day intervals, post larvae were bath challenged with V. harveyi and observed for pathological signs. Post larvae fed the HD 4 diet enjoyed a 75% improvement in survival over the control group and significantly improved final weights and SGR (P < 0.05). The herbal diets HD1 to HD4 helped to decrease the Vibrio load in P. monodon post-larvae after challenging.  相似文献   

18.
Survival, growth and yield of competent great scallop (Pecten maximus) larvae were investigated during a full production season in a commercial hatchery in western Norway. Broodstock were collected from natural scallop beds and 12 groups were induced to spawn during the period December 2002 to July 2003. Larvae were reared on a large scale in 36 flow-through tanks (3500 l) at 17±1 °C and continuously fed a mixture of five algal species produced in an indoor continuous-flow system. Large variations in larval performance between spawning groups and tanks were observed, but the results were as good as earlier results using the batch system and prophylactic addition of chloramphenicol. Growth from days 3–24 averaged 4.8 μm day−1±0.8 (sd) and survival 22.4%±21.8 (sd). Mean yield of day 3 larvae was 7.1%±10.0 (sd) and 26.6%±25.9 (sd) for those surviving to day 24. Yield was significantly correlated to larval survival. Larval success was related to initial larval density, algal concentration and season. It was found that the best production regime had an initial larval density lower than 6 ml−1 and algal concentration of less than 12 μl−1 regardless of season. Seventeen tanks met these criteria and produced a mean yield of 0.5 larvae ml−1 to settlement. Flow-through systems are currently regarded as the only feasible method for viable hatchery production of P. maximus larvae in Norway.  相似文献   

19.
The giant freshwater prawn, Macrobrachium rosenbergii, is cultured widely in the Mekong Delta region of Vietnam but it is often difficult or expensive for hatchery operators to purchase commercial diets used as a feeding supplement to Artemia nauplii. Therefore, in the present study, the effects of lipid sources and lecithin on the growth and survival rate of M. rosenbergii larvae were examined in order to develop suitable hand-prepared larval diets for seed production of M. rosenbergii in this area. Six egg custard diets consisting of various ratios of lipid (originating from soybean oil and squid oil) and lecithin were used for rearing Macrobrachium rosenbergii larvae. Treatments in which larvae were fed diets containing squid oil exhibited the highest body length and survival rates (7.14–7.43 mm and 51.1–68.1%, respectively), and differed significantly from other treatments (P<0.05). Use of dietary soybean oil yielded the lowest body length and survival rates (6.29–6.75 mm and 22.0–48.7%), respectively). The supplementation of dietary lecithin did not increase final body weight but did improve larval survival rates. The n-3 HUFA content of prawns fed dietary squid oil was higher than those of animals provided with other diets. These results indicated that the most appropriate diet for rearing M. rosenbergii larvae is the diet containing 3% squid oil and 1.5% lecithin.  相似文献   

20.
The spider crab Maja brachydactyla is overexploited on the NW coast of Spain. Aquaculture of this species can be the solution to the problem, and consequently, several attempts of intensive larval rearing have been conducted. However, most of the studies already published do not provide enough zoo technical data, especially in terms of larval and prey densities or the nutritional quality of diets used for rearing.Three experiments were carried out to evaluate the conditions for intensive larval rearing of M. brachydactyla. Larval stocking density (10, 50 and 100 larvae L− 1), prey:larva ratio (15, 30 and 60 enriched Artemia larva− 1) and diet (enriched Artemia, non-enriched Artemia and polychaete supplement) effects on growth and survival of this species were studied. For larval culture nine, 35 L, 150 μm mesh-bottomed PVC cylinders (triplicates for each treatment and larval stage) connected to a recirculation unit, were used. Temperature and salinity were kept constant at 18 °C and 36‰ respectively. A 12 to 18 day trial was conducted for each experiment and samples of larvae were collected at each larval stage (zoea I, zoea II, megalopa) in the inter-molt phase and at first juvenile. Survival, carapace length and width, dry weight (DW), and proximate biochemical content (protein, carbohydrates and total lipid) as well as lipid class composition were determined.Stocking densities of 100 larvae L− 1 resulted in higher growth in DW and higher content in lipids and protein for zoea I (ZI) and zoea II (ZII) than 10 larvae L− 1. However, survival decreased with increasing stocking density.The use of 60 preys larva− 1 produced larvae with significantly higher DW and protein content, especially at ZII stage, than lower prey densities. Survival rate obtained feeding 60 preys larva− 1 up to the megalopa stage was almost two-fold (42.2%) the rate obtained using 15 preys larva− 1 (24.8%).Larvae fed on enriched Artemia (EA) showed an increase in weight up to megalopa (518.9 ± 26.5 μg) in contrast to larvae fed on non-enriched prey (A) (467.9 ± 6.9 μg). Variation in DW correlated with the total lipid content (L) of the larvae (LEA = 70.1 ± 37.5 μg ind− 1; L= 28.9 ± 3.2 μg ind− 1) especially in terms of neutral lipids. The use of an initial density of at least 50 larvae L− 1 and 60 enriched Artemia larva− 1 can be considered the most adequate rearing parameters in order to obtain good results in growth and survival of M. brachydactyla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号