首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Larval mortalities occurring in molluscan hatcheries have often been associated with bacterial contamination, and more specifically with vibrios. Although batches of oyster and clam larvae have been routinely reared in the hatchery of Argenton (North Brittany, France) without antibiotics, high larval mortalities have been recorded with the great scallop, Pecten maximus, under similar conditions. For this species, an addition of antibiotics was found necessary and chloramphenicol was used at a concentration of 8 mg l–1. However, this chemical has now been banned in Europe, making either substitution products or an improvement in the rearing procedures essential. Studies carried out have shown that neither a decrease in larval density (to 1 larva ml–1) nor an increase in seawater change frequency (to one per day) had any positive effects. Furthermore, elective substances such as sugars were not suitable and the use of another antibiotic, erythromycin, led to inconsistent results. The only positive effects were obtained with lower levels of chloramphenicol, which does not resolve the problem. Because no alternative solutions have as yet been found, further research needs to be undertaken.  相似文献   

2.
In order to optimize Pecten maximus larval performance and post-larval yield, larvae were fed five algal concentrations in the range 3–20 cells μL?1 in 2,800-L flow-through tanks without prophylactic antibiotics. Competent larvae were transferred to a commercial hatchery for settlement and provided uniform conditions for 4 weeks to observe effects. Increased diet concentration increased the sum of fatty acids (FA) in the total larval population, reaching 7 and 25 ng FA larvae?1 at 3 and 16 cells μL?1, respectively. The FA level in competent larvae was not affected by diet concentration and ranged from 30 to 46 ng larvae?1. Increased diet concentration increased larval growth rate, and the larvae were ready to settle 5 days earlier when fed 16 cells μL?1 compared to 3 cells μL?1. Larval ingestion rate increased during life span and with increased larval diet concentrations, but a considerable amount (40–60 %) of the added algal cells was lost from the larval rearing tanks due to the seawater flow. There was no effect on larval survival, final post-larval shell height, % of competent larvae transferred to settlement, or total yield of post-larvae. Final mean post-larval shell height was 509 μm and 25.5 % of competent larvae settled, resulting in a final post-larval yield between 6.9 and 17.6 % of the initial number of d3 larvae. Competent larvae with similar FA content produced similar numbers of post-larvae independent of diet concentration, even if higher diet concentrations resulted in higher rates of larval development and metamorphosis.  相似文献   

3.
《水生生物资源》1999,12(2):121-130
The French oyster farming industry relies almost exclusively on juveniles collected from the natural environment; the supply of spat produced by hatcheries is low, about 10 % of the industry's requirements. Development through selective breeding of oyster stocks which are better suited for aquaculture purposes, is likely to reverse this tendency since only hatcheries will be able to supply such animals. Scallop farming, which at present is poorly developed in France, relies exclusively on hatchery produced spat. Although hatchery technology is constantly being improved, significant production problems remain which must be solved before hatcheries become a major supplier of juveniles for the industry. This paper describes the present state of hatchery technology in France based on experimental results obtained with the great scallop Pecten maximus and the Pacific oyster Crassostrea gigas, over the past ten years. Compared to the great scallop, the Pacific oyster has higher D larva yields (60 % for C. gigas vs. 30 % for P. maximus) and a faster larval growth rate (10 μm·d−1 for C. gigas vs. 5 μm·d−1 for P. maximus). However, Pacific oysters have a greater heterogeneity during larval development and higher mortality rates (40 % for C. gigas vs. 25 % for P. maximus) which produce lower overall yields of pediveliger larvae ready-to-set for Pacific oysters (15 %) compared to the great scallop (30 %). Development of continuous larval and post-larval culture methods along with development of continuous phytoplankton technology offers one of the most promising methods to improve molluscan hatchery techniques.  相似文献   

4.
The effect of stocking density on the survival and growth of pikeperch, Sander lucioperca (L.), larvae was examined in two consecutive experiments. In experiment I, 4-day-old larvae [body wet weight (BW): 0.5 mg; total body length (TL): 5.6 mm] were reared in 200-l cylindro-conical tanks in a closed, recirculating system (20 ± 0.5°C) at three stocking densities (25, 50 and 100 larvae l−1) and fed a mixed feed (Artemia nauplii and Lansy A2 artificial feed) for 14 consecutive days. At densities of 25 and 100 larvae l−1, growth rate and survival ranged from 2.7 to 1.9 mg day−1 and from 79.2 to 72.3%, and fish biomass gain ranged from 0.6 to 2.0 g l−1, respectively. There were two periods of increased larval mortality: the first was at beginning of exogenous feeding and the second during swim bladder inflation. In experiment II, 18-day-old larvae (BW: 35 mg; TL: 15.6 mm) obtained from experiment I were reared under culture conditions similar to those of experiment I, but at lower stocking densities (6, 10 and 15 larvae l−1). The fish were fed exclusively with artificial feed (trout starter) for 21 consecutive days. At densities of 6 and 15 larvae l−1, the growth rate and fish biomass gain ranged from 28.8 to 23.1 mg day−1 and from 2.0 to 3.3 g l−1, respectively. The highest survival (56.5%) was achieved at a density of 6 larvae l−1. Mortality at all densities was mainly caused by cannibalism II type behaviour (27–35% of total). In both experiments, growth and survival were negatively correlated and fish biomass gain positively correlated with stocking densities. The present study suggests that the initial stocking density of pikeperch larvae reared in a recirculating system can be 100 individuals l−1 for the 4- to 18-day period post-hatch and 15 individuals l−1 for the post-19-day period.  相似文献   

5.
《Aquaculture Research》2017,48(11):5463-5471
Hatchery production of great scallop, Pecten maximus, remains unpredictable, notably due to poor larval survival. Large‐scale flow‐through systems up to 3500 L have been developed to avoid the use of antibiotics in static systems. Alternatively, small‐scale flow‐through systems have been successfully applied for oysters but they proved to be unsuitable to rear scallop larvae. By focusing on physical factors presumed to limit P. maximus larval development, this study aimed to optimize great scallop larvae rearing parameters under controlled conditions. First, the influence of aeration on larval performances, energetic metabolism and antioxidant defences were studied both in static and flow‐through systems. Aeration depressed larval food intake, regardless of the intensities of flow tested (100 ml/min, 155 ml/min and 270 ml/min). On the other hand, antioxidant enzyme activities remained constant or decreased, suggesting that antioxidant defences were inactivated. The increase in citrate synthase activity suggested an increase in metabolic rate possibly due to a turbulent stressful environment. All larvae exposed to such turbulence died before reaching metamorphosis, whereas those reared without aeration survived well (≈ 95%). The effects of water renewal were thereafter studied in 50‐L flow‐through flat‐bottomed tanks. No differences in survival (20.4 ± 0.5%), growth (3.8 ± 0.2 μm/d), competence (5.6 ± 0.2%), energetic metabolism level and antioxidant enzyme activities were observed when comparing 12.5 and 25 L/hr water renewal. Whereas air bubbling leads to detrimental effects, flow‐through in small flat‐bottomed tanks appears to be a suitable technique for scallop larvae rearing.  相似文献   

6.
The potential for predation by the sea stars Asterias rubens and Marthasterias glacialis on seed-size (41 ± 3 mm shell height) juvenile scallops (Pecten maximus), ready for seeding in sea ranching areas, was investigated in a 30-day laboratory predation experiment. There was no significant difference (P > 0.05) in predation rate of large A. rubens (95–115 mm radium) and large M. glacialis (120–164 mm radius), which averaged 0.88 and 0.71 scallops individual−1 day−1, respectively. Maximum rates of predation were 2.44 scallops individual−1 day−1 for large A. rubens and 3.00 scallops individual−1 day−1 for large M. glacialis. Small M. glacialis (76–87 mm radius) had a significantly lower predation rate than large individuals of either species (average 0.13 scallops individual−1 day−1, P < 0.05). Small A. rubens (50–80 mm radius) only began to prey on scallops when average scallop size was reduced to 35 mm. Based on estimated density of sea stars at a Norwegian sea ranching site and average predation rates, a population of scallops seeded at 10 m−2 would be reduced by between 0.5 and 11% in 1 month. Furthermore, using the highest observed predation rate, the degree of loss of scallops indicated that scallop culture via sea ranching would not be economically viable and thus methods for reducing scallop predation by sea stars are necessary.  相似文献   

7.
Scallop larval production systems in Norway have changed from the use of batch to continuous flow through systems (FTS) during the last decade. Energy use to heat water in both larval and spat nurseries is considerable. Two experiments (June 2010 and February 2011) using water recirculation technology (RAS) were performed in large scale systems (3500 L larval tanks) supplied with continuous addition of algal feed, and 20% renewal of seawater.In the RAS a gradual increase in CO2, decrease in pH and dissolved oxygen was observed over time. This was most obvious during experiment two, when the total organic carbon content increased in both FTS and RAS. The total bacterial number was lower and more stable in FTS than in the RAS. The variations in seawater quality parameters were smaller during the first experiment compared to the second, when values of oxygen saturation were reduced to <70%, pH was 7.8 and NO3 reached 5 mg L−1. Even though these changes would seem less beneficial for survival and growth of scallop larvae, results showed that the survival at the end of the larval stage was higher in the FTS, but the yield of competent larvae ready for settlement was not significant different (p > 0.05) due to large variations between tanks. The CV% was 28.9% in FTS, while it was 49.9% in RAS. In FTS the mean yield was 40.2%, while it was 26.5% of initial number of larvae in RAS. Large variations in survival and yield were found between the larval tanks as well as gradual reduction in pH and oxygen in RAS tanks. The results indicate that there is a large potential for 80% reduction in water use by utilizing recirculation technology.  相似文献   

8.

The Catarina scallop Argopecten ventricosus is a highly valued resource. Although its hatchery spat production has already been reported, the effects of initial larval stocking density have never been reported for production purposes. This study evaluates A. ventricosus growth and survival in triplicate using three stocking densities: low (LD; 2 larvae mL?1), medium (MD; 4 larvae mL?1), and high (HD; 6 larvae mL?1). Three-day old larvae were reared in 18-L plastic carboy at 25.6?±?0.5 °C and fed with a microalgal blend of Isochrysis galbana and Chaetoceros calcitrans (1:1 cell number ratio) for 7 days, equivalent to 10 post-fertilization days (PFD). Higher specific growth rate was recorded at LD (15.8?±?0.2%) after 8 PFD of culture compared to MD (1.6?±?0.5%) and HD (4.1?±?1.8%) densities. The least time required for 60% of the larvae to reach the pediveliger stage was recorded at LD condition (10 PFD). Higher survival was recorded at HD (58.8?±?3.1%) at 8 PFD compared to MD (53.5?±?3.1%) and LD (43.9?±?3.0%). After 8 PFD, stocking density was highly related to larval growth and survival. To increase production and growth, and reduce the time required to reach pediveliger stage, stocking density should start with 6 larvae mL?1 and be reduced to 2 larvae mL?1 at 7 PFD.

  相似文献   

9.
Bacillus subtilis isolated from the intestine of Cirrhinus mrigala (Hamilton) was incorporated into the rearing water of Poecilia reticulata (Peters), Poecilia sphenops (Valenciennes), Xiphophorus helleri (Heckel) and Xiphophorus maculatus (Gunther) at four different concentrations (5 × 108 cells ml−1, 5 × 107 cells ml−1, 5 × 106 cells ml−1 and 5 × 105 cells ml−1) and its effect on fish growth performance and survival, water quality parameters and bacterial population of water were assessed. The results showed that the addition of bacterial cells in the rearing water resulted in greater survival and a faster growth rate and, hence, greater length and weight increments of the livebearers. The use of a bioaugmentor in the rearing water of the livebearing fishes resulted in significantly lower (P < 0.05) concentrations of dissolved organic matter and total ammonium nitrogen. The counts of motile aeromonads and total coliforms recorded in the water of bioaugmented tanks were also lower than that in the control tank. Bioaugmentation between 106 and 108 cells ml−1 in the rearing water is sufficient in establishing a bioaugmentor and the use of a higher concentration of bacterial cells did not always lead to significantly better results.  相似文献   

10.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

11.
One of the major problems in the shrimp culture industry is the difficulty in producing high-quality shrimp larvae. In larviculture, quality feeds containing a high content of highly unsaturated fatty acids (HUFA) and ingredients that stimulate stress and disease resistance are essential to produce healthy shrimp larvae. In the present study, Penaeus monodon postlarvae (PL15) were fed for 25 days on an unenriched Artemia diet (control; A) or on a diet of Artemia enriched with either HUFA-rich liver oil of the trash fish Odonus niger (B), probionts [Lactobacillus acidophilus (C1) or yeast-Saccharomyces cerevisiae (C2)] or biomedicinal herbal products (D) that have anti-stress, growth-promoting and anti-microbial characteristics. P. monodon postlarvae fed unenriched Artemia exhibited the lowest weight gain (227.9 ± 8.30 mg) and specific growth rate (9.95 ± 0.05%), while those fed the HUFA-enriched Artemia (B) exhibited the highest weight gain and specific growth rate (362.34 ± 12.56 mg and 11.77 ± 0.08%, respectively). At the end of the 25-day rearing experiment, the shrimp postlarvae (PL40) were subjected to a salinity stress study. At both low and high (0 and 50‰) salinities, the group fed the control diet (A) experienced the highest cumulative mortality indices (CMI) 935.7 ± 2.1 and 1270.7 ± 3.1, respectively. Those fed diet D showed the lowest stress-induced mortality, and CMI were reduced by 31.1 and 32.3% under conditions of low and high salinity stress, respectively. A 10-day disease challenge test was conducted with the P. monodon postlarvae (PL40–PL50) by inoculating the shrimp with the pathogen Vibrio harveyi at the rate of 105–107 CFU/ml in all rearing tanks. P. monodon postlarvae fed probiont-encapsulated Artemia diets (C1 and C2) exhibited the highest survival (94.3 and 82.3%, respectively) and lowest pathogen load (V. harveyi) in hepatopancreas (5.2 × 102 ± 9.0 × 10 and 4.6 × 102 ± 9.0 × 10 CFU g−1, respectively) and muscle (2.0 × 102 ± 6 × 10 and 1.7 × 102 ± 8.6 × 10 CFU g−1, respectively) tissues. The shrimp that were fed the unenriched Artemia (Control; A) showed the lowest survival (26.33%) and highest bacterial load in the hepatopancreas (1.0 × 105 ± 5 × 103 CFU g−1) and muscle (3.6 × 104 ± 6 × 102 CFU g−1). The shrimp fed the herbal product (D)-enriched Artemia also exhibited enhanced survival and reduced V. harveyi load in the tissues tested compared to the control diet (A) group. The results are discussed in terms of developing a quality larval feed to produce healthy shrimp larvae.  相似文献   

12.
A flow-through (FT) culture system is described for calico scallop, Argopecten gibbus, larvae. Its performance was assessed by larval survival rate, shell growth, settlement rate and post-larval shell growth for the duration of larval life (13 days). Comparisons were made with larvae reared in standard static system (S). Effect of increased larval density on FT performance was also investigated. With comparable larval densities, survival rate of Day 2 larvae to pediveliger stage was similar in both larval rearing systems. Shell growth for FT-reared larvae was comparable or significantly higher than in the static system (P < 0.01). Settlement rate of pediveligers was comparable for both systems, averaging 30.7%, and no significant difference was seen in shell growth of FT- and static-reared pediveligers. Increased initial larval density did not affect survival rate in FT, but did negatively affect larval shell growth, settlement rate and post-larval shell growth yielding lower growth and minimal settlement rate (10.9 ± 2.8%) compared to the static system. This FT system was successful as larval rearing system, optimising space allocation in the hatchery, reducing labour, and eliminating the use of antibiotics. Optimising initial larval density within the system needs to be investigated in association with food ration.  相似文献   

13.
A bacteriological study was carried out at a scallop (Pecten maximus) hatchery near Bergen, western Norway following a severe increase in mortality rates during the larval stages of the scallops. No larvae survived to settling, except for those in groups treated prophylactically with chloramphenicol. In order to identify pathogenic strains of bacteria, we performed a challenge test on 10- to 16-day-old larvae using isolated bacterial strains from the hatchery. Infection with six of these strains produced mortalities that were not statistically different from that resulting from infection with the known pathogen Vibrio pectenicida. However, about 5% of the strains tested in the challenge experiment produced higher motility rates than found in the unchallenged control group, indicating a possible probiotic effect. On the basis of 16S rDNA analysis on these strains, the phylogenetic tree indicated two groups of apparent pathogens: (1) one strain, LT13, grouped together with Alteromonas/Pseudoalteromonas; (2) a cluster of strains grouped together with Vibrio splendidus (LT06, LT21, LT73, PMV18 and PMV19). Strain LT13 was isolated from cultures of the microalga Chaetoceros calcitrans used for feed, while the other strains were isolated from larval cultures. Transmission electron microscopy showed intracellular bacteria that resembled bacteria in the groups Chlamydiaceae and Rickettsiaceae.  相似文献   

14.
The great scallop, Pecten maximus is a potentialaquaculture species in Norway, but production to date has been low. Greatscallop landings in 2000 were 571 tonnes, exclusively from harvesting wildstocks, landed by divers. Approximately two million juveniles of 15mm shell height have been produced annually in a hatchery since1998, and distributed to farmers. Research projects on larvae and juvenilesinclude studies of various antibacterial treatments, improved culture systemdesigns and application of probiotics. Results from hanging cultures underdifferent environmental conditions indicate a strong correlation between lowtemperature and poor survival, and point out the importance of careful selectionof cultivation sites. Good growth potential of scallops in Norwegian waters hasbeen shown, and it is possible to reach market size of 10 mm shellheight in three to four years. Experiments with fences and other strategiesprotecting cultured scallops on the seabed from predation by crabs are inprogress.  相似文献   

15.
Rearing of great scallop (Pecten maximus L.) larvae was tested in static and flow-through systems in order to improve intensiverearing methods and avoid bacterial problems. The static systems were:standard 300 litre tanks (STD) and standard tanks supplied with anantibacterial agent (STD+A). The flow-through systems were: 500 ldown-welling tanks (FLOW) and a 4700 l up-welling tank (SILO).Bacteral counts ranked the systems in the following order SILO 90%) and day 22(52%) after fertilisation was obtained in the SILO system.The type of rearing system did not affect larval growth.  相似文献   

16.
The annual reproductive cycle of walleye (Stizostedion vitreum) was characterized by documenting changes in gonadal development and serum levels of estradiol-17β (E2), testosterone (T), 17α,20β-dihydroxy-4-pregnen-3-one (17,20-P), and 11-ketotestosterone (11-KT) in wild fish captured from upper midwestern lakes and rivers throughout the year. Fish from the populations used in this study spawn annually in early- to mid-April. Walleye showed group synchronous ovarian development with exogenous vitellogenesis beginning in autumn. Oocyte diameters increased rapidly from ∼ 200 μm in October to ∼ 1,000 μm in November, and reached a maximum of 1,500 μm just prior to spawning. Changes in gonadosomatic indices (GSIs) paralleled changes in oocyte diameters. Serum E2 levels in females increased rapidly from low values in October (< 0.1 ng ml−1) to peak levels of 3.7 ng ml−1 in November, coinciding with the period of the most rapid ovarian growth. Subsequently, E2 levels decreased from December through spawning. Serum T levels exhibited a bimodal pattern, increasing to 1.6 ng ml−1 in November, and peaking again at 3.3 ng ml−1 just prior to spawning. We detected 11-KT in the serum of some females at concentrations up to 5.6 ng ml−1, but no seasonal pattern was apparent. In this study (unlike our results in a related study) 17,20-P was not detected. In males, differentiation of spermatogonia began in late August, and by January the testes were filled (> 95% of germ cells) with spermatozoa. Mature spermatozoa could be expressed from males from January through April. GSIs ranged from 0.2% (post-spawn) to 3.2% (pre-spawn). Serum T levels rose from undetectable levels in post-spawn males to 1.6 ng ml−1 by November, remained elevated throughout the winter, and peaked at 2.8 ng ml−1 I prior to spawning. Levels of 11-KT in males remained low (< 10 ng ml−1, from post-spawning through January, then increased significantly by March and peaked just prior to spawning at 39.7 ng ml−1. Our results indicate that vitellogenesis and spermatogenesis are complete or nearly so, in walleye by early winter, and suggest that it may be possible to induce spawning in this species several months prior to the normal spawning season by subjecting fish to relatively simple environmental and hormonal treatments.  相似文献   

17.
Increased market demand for algal raw materials has stimulated research and development into new cultivation technologies, particularly in countries with economically important seaweed industries. Chondrus canaliculatus is a red alga endemic to the temperate Pacific coast of South America and produces a complex carrageenan. In Chile, this potential marine resource has been underutilized since the early 1990s, after it was replaced mainly by imports of Kappaphycus and Eucheum from Asia. The study of the cultivation of C. canaliculatus in outdoor tanks demonstrates the potential to produce large quantities of algal material due to the high productivity observed. The material produced may be important in Chile as feed for cultured algal herbivores such as Haliotis spp. Data were obtained on the key factors affecting the growth of this alga, including light, temperature, and nutrient concentrations. The results showed that, on a dry weight basis, productivity varied seasonally between 40 g m−3 wk−1 in autumn and 200 g m−3 wk−1 in spring, and the optimal stocking density in our experiments was 8 kg m−3. Effects of self-shading were among the most important limiting factors in the culture. Discussion is presented on the interactions between temperature, pH, salinity, enrichment with N and P, and water exchange on the maximal growth of C. canaliculatus in this culture.  相似文献   

18.
Bacterial community structures were analyzed in water used for rearing fish larvae by fluorescence in situ hybridization. In Experiment 1, red sea bream Pagrus major larvae were reared in two commercial seed production tanks. The survival rate in Tank 1 was higher than in Tank 2, even though phytoplankton, Nannochloropsis sp., was added to both tanks. In Tank 2, γ-proteobacteria became dominant (∼70% of total bacteria) on day 13, there after heavy larval mortalities occurred. In Tank 1, however, α-proteobacteria and the Cytophaga-Flavobacterium cluster were predominant from day − 1 until day 13; no significant mortality was recorded. In Experiment 2, marble goby Oxyeleotris marmoratus larvae were cultured with or without Nannochloropsis sp. At the end of the experiment, larval survival rates in aquaria with Nannochloropsis sp. were significantly (P <0.05) higher than those without. In rearing water without Nannochloropsis sp., γ-proteobacteria increased during rearing. In rearing water with Nannochloropsis sp., α-prote obacteria and the Cytophaga-Flavobacterium cluster were predominant at the beginning of the experiments and the relative abundance of γ-proteobacteria was maintained at a lower level throughout the experiments. The predominance of α-proteobacteria and the Cytophaga-Flavobacterium cluster appears to be a good indicator of successful larval production.  相似文献   

19.
The aim of this study was to evaluate the effects of hatchery‐tank colours (white, yellow, red, blue, green and black) on the performance of larval culture of Macrobrachium amazonicum. The larvae were fed daily with newly hatched Artemia nauplii. The hatchery‐tank colours affected the light level inside the tanks, the consumption of Artemia nauplii (AN), larval development, survival, mass gain and productivity of postlarvae (PL). The overall consumption of Artemia nauplii per larva during the larval cycle was 30% and 45% higher in the green and red tanks respectively. The significant variation of AN consumption among tank colours (= 0.0006) indicates that M. amazonicum larvae are visual predators. Survival was higher in the black, blue and green tanks, reaching more than 75%. However, the highest productivity was obtained in the black tanks (80.1 PL L?1). Lighter coloured tanks and excess luminosity (more than 2 μmol s?1 m2 at tank bottom) appear to be important stress factors for larvae, contributing to reduce survival and productivity. The results indicate that rearing M. amazonicum in black tanks will improve larvae condition, ensure greater productivity of postlarvae and lower Artemia consumption, increasing technological and economic viability.  相似文献   

20.
A comparison of the culturable microbiota present in the different compartments of a great scallop (Pecten maximus) hatchery with two experimental production systems, FTS and RAS, throughout a cycle of larval rearing was carried out. All isolates obtained from broodstock gonads, larvae, tank water, biofilm, microalgae, UV‐treated water and biofilter in both systems at three sampling times were characterized by biochemical tests and identified by sequencing of the 16S rRNA gene. Some of the genera were found to be exclusive of broodstock gonads, such as Sinobacterium, Kordia or Microbulbifer, and differences between gonad microbiota before and after spawning were detected. The number of morphotypes obtained in water, larvae and biofilm was similar in both systems, as well as the behaviour of the microbial populations in almost all hatchery compartments, in which Vibrio, Neptuniibacter, Pseudoalteromonas and Shewanella were the most common genera. The diversity obtained was analysed using the principal component analysis (PCA) and Fisher's exact test, showing that the microbial communities present in the common compartments between FTS and RAS did not significantly differ. These results suggest that, at least from a microbiological point of view, the recirculation system could be a good alternative for the production of scallop larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号