首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16695篇
  免费   20篇
  国内免费   1篇
林业   3645篇
农学   1298篇
基础科学   137篇
  2815篇
综合类   731篇
农作物   2101篇
水产渔业   1846篇
畜牧兽医   1145篇
园艺   1113篇
植物保护   1885篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   2748篇
  2017年   2707篇
  2016年   1185篇
  2015年   77篇
  2014年   30篇
  2013年   31篇
  2012年   805篇
  2011年   2144篇
  2010年   2114篇
  2009年   1265篇
  2008年   1330篇
  2007年   1594篇
  2006年   48篇
  2005年   119篇
  2004年   130篇
  2003年   176篇
  2002年   73篇
  2001年   16篇
  2000年   52篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1993年   12篇
  1992年   7篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   11篇
  1987年   1篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1960年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
In this study, we analysed the impact of heavy metals and plant rhizodeposition on the structure of indigenous microbial communities in rhizosphere and bulk soil that had been exposed to heavy metals for more than 150 years. Samples of the rhizosphere of Silene vulgaris and non-rhizosphere soils 250 and 450 m from the source of emission that had different metal concentrations were collected for analyses. The results showed that soils were collected 250 m from the smelter had a higher number of Cd-resistant CFU compared with the samples that were collected from 450 m, but no significant differences were observed in the number of total and oligotrophic CFU or the equivalent cell numbers between rhizosphere and non-rhizosphere soils that were taken 250 and 450 m from the emitter. Unweighted pair group method with arithmetic mean (UPGMA) cluster analysis of the denaturing gradient gel electrophoresis (DGGE) profiles, as well as a cluster analysis that was generated on the phospholipid fatty acid (PLFA) profiles, showed that the bacterial community structure of rhizosphere soils depended more on the plant than on the distance and metal concentrations. The sequencing of the 16S rDNA fragments that were excised from the DGGE gel revealed representatives of the phyla Bacteroidetes, Acidobacteria, Gemmatimonadetes, Actinobacteria and Betaproteobacteria in the analysed soil with a predominance of the first three groups. The obtained results demonstrated that the presence of S. vulgaris did not affect the number of CFUs, except for those of Cd-resistant bacteria. However, the presence of S. vulgaris altered the soil bacterial community structure, regardless of the sampling site, which supported the thesis that plants have a higher impact on soil microbial community than metal contamination.  相似文献   
2.
3.
Successful forest restoration requires planting quality seedlings with optimal growth potential. Thus, nurseries need to produce seedlings with plant attributes that favor the best chance of successful establishment once they are field planted. From the mid-twentieth century on, research foresters have critically examined plant attributes that confer improved seedling growth under various restoration site conditions. This review examines the value of commonly measured seedling quality attributes (i.e., height, diameter, root mass, shoot-to-root ratio, drought resistance, freezing tolerance, nutrient status, root growth potential, and root electrolyte leakage) that have been recognized as important in explaining why seedlings with improved attributes have better growth after planting. Seedlings with plant attributes that fall within the appropriate range of values can increase the speed with which they overcome planting stress, initiate growth, and become “coupled” to the forest restoration site, thereby ensuring successful seedling establishment. Although planting high quality seedlings does not guarantee successful seedling establishment, it increases chances for successful establishment and growth.  相似文献   
4.
The Chinese dwarf cherry (Cerasus humilis (Bge.) Sok.) is a small shrub with edible fruits. It is native to northern and western China. This species was included as a medicinal plant in the “Chinese Pharmacopeia” and has emerged as an economically important crop for fresh fruit consumption, processing into juice and wine and nutraceutical products as well. To gain a better understanding of flavonoid biosynthesis and help develop value added products and better cultivars with greater health benefits, we analyzed total flavonoid content (TFC), composition, and radical scavenging activities in fruit extracts of 16 Chinese dwarf cherry genotypes. Fruit peel TFC ranged from 33.5 to 72.8 mg/g RE·FW (RE: rutin equivalent, FW: fresh weight) while fruit flesh TFC ranged from 4.3 to 16.9 mg/g RE·FW. An HPLC analysis revealed that fruit extracts contained 14 flavonoids with considerable variation in their profiles across genotypes. The most abundant flavonoids in most genotypes were proanthocyanidin B1 (PA-B1), proanthocyanidin B2 (PA-B2), phloretin 2′-O-glucoside (PG), and phloretin 2′,4′-O-diglucoside (PDG). Principal component analysis showed that PG, PA-B1, and PA-B2 had large, positive factor loading values in the first principal component for each genotype. Increased scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals was apparent in genotypes ‘Nongda 4’, ‘Nongda 3’, ‘Nongda 6’, ‘Wenfenli’, and ’10-32’, suggesting promising applications in the production of nutraceutical products. In summary, our results will aid in breeding, fruit processing, and developing medicinal uses of the Chinese dwarf cherry.  相似文献   
5.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture, soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa (Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate (P N), stomatal conductance (g s), and water-use efficiency (W UE) in the seedlings exhibited a clear threshold response to the relative soil water content (R SWC). The highest P N and W UE occurred at R SWC of 51.84 and 64.10%, respectively. Both P N and W UE were higher than the average levels at 39.79% ≤ R SWC ≤ 73.04%. When R SWC decreased from 51.84 to 37.52%, P N, g s, and the intercellular CO2 concentration (C i) markedly decreased with increasing drought stress; the corresponding stomatal limitation (L s) substantially increased, and nonphotochemical quenching (N PQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II (PSII) in the form of heat, and the reduction in P N was primarily due to stomatal limitation. While R SWC decreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry (F v/F m) and the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching (q P), and N PQ; in contrast, minimal fluorescence yield of the dark-adapted state (F 0) increased markedly. Thus, the major limiting factor for the P N reduction changed to a nonstomatal limitation due to PSII damage. Therefore, an R SWC of 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% ≤ R SWC ≤ 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F. suspensa.  相似文献   
6.
Continuous increases in anthropogenic nitrogen (N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon (C) storage. Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch (Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at 100 kg N ha?1 a?1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However, soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However, microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, δ13C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition (1) altered microbial biomass and activity without affecting soil C in light fractions and (2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.  相似文献   
7.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   
8.
9.
Aphanomyces euteiches Drechsler is an oomycete pathogen of leguminous crops that causes root rot, a severe disease of pea (Pisum sativum L.) worldwide. An improved understanding of the genetic structure of A. euteiches populations would increase knowledge of pathogen evolution and assist in the design of strategies to develop pea cultivars and germplasm with stable disease resistance. Twenty six primers pairs were used to amplify Sequence Related Amplified Polymorphisms (SRAP) among 49 A. euteiches isolates sampled from pea. A total of 190 polymorphic SRAP bands were generated, of which 82 were polymorphic between all the A. euteiches isolates. The percentage of polymorphic bands per primer pair ranged from 22 to 75%. According to the PIC value estimated for each marker, 60% of the SRAP markers were highly to reasonably informative (PIC > 0.25). Genetic structure of A. euteiches populations sampled in different American and French locations showed low to high genetic diversity within populations. The largest variation occurred within countries, with a total estimated genetic diversity of 0.477 and 0.172 for American and French populations, respectively. This was particularly evident from a principal component analysis (PCA) and a Minimum Spanning Networks (MSN) based on genetic profiles of isolates, which generated two different clusters, one corresponding to the French isolates and four American isolates (MV1, MV5, MV7, Ath3), and the other to American isolates. A. euteiches populations from cultivated pea in France appeared as a single unstructured population, whereas American isolates of A. euteiches diverged into three different populations.  相似文献   
10.
The fungus Puccinia coronata Corda. is the causal agent of crown rust on oats (Avena sativa) and grasses and the disease is a major problem in oat production causing devastating yield losses. The population biology of P. coronata in oat fields and on the aecial host in central Sweden was studied to get a deeper understanding of the role of the aecial hosts in the epidemiology of the disease. Samples were collected from the aecial hosts common buckthorn (Rhamnus cathartica) and alder buckthorn (Frangula alnus), and three adjacent spring oat (Avena sativa) fields. Microsatellite markers were used to evaluate the relationships between populations sampled from the different hosts. According to our results F. alnus can be excluded as a part of the oat crown rust disease cycle. The results further show that samples collected from the aecial host were genetically separate from the population sampled in adjacent oat fields. Concurrently, the genotypic variation of P. coronata observed within oat fields was high. No population differentiation was observed within or between samples collected from different fields within the region, suggesting that airborne spores from other than the sampled specimens of the aecial hosts were contributing to the genetic diversity of P. coronata f. sp. avenae in the selected oat fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号