首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
海胆纲线粒体基因组特征及基因差异位点分析   总被引:2,自引:0,他引:2  
田美  申欣  孟学平  程汉良 《水产科学》2011,30(3):174-176
研究了海胆纲6个线粒体基因组均编码后生动物标准的37个基因。6个海胆线粒体基因组的基因排列完全相同。海胆纲和球海胆属线粒体基因组13个蛋白质编码基因和2个核糖体RNA基因的差异位点分析表明,差异位点数最多的基因为nad5基因,其次为nad4基因和cox1基因。因此,在海胆纲和球海胆群体遗传学的研究中,nad5、nad4和cox1基因是理想的分子标记,用于分析海胆内部不同群体之间的遗传多样性。  相似文献   

2.
海参纲线粒体基因组特征分析及分子标记探讨   总被引:1,自引:0,他引:1  
通过常规PCR和长PCR扩增获得仿刺参的线粒体DNA,进而采用鸟枪法测序、序列拼接获得仿刺参的线粒体基因组全序列.结合瓜参、拟刺参、海参及另外一个仿刺参的线粒体基因组,初步揭示了海参纲线粒体基因组的基本特征.檐手目的3个物种(仿刺参、拟刺参和海参)线粒体基因组的基因排列完全一致,且与海胆纲物种线粒体基因组的基因排列相同.隶属于枝手目的瓜参线粒体基因组的基因排列与其他海参线粒体基因组相比,发生6个tRNA基因的易位.海参纲线粒体基因组主编码基因的变异特征分析揭示了在海参类线粒体基因组所有的主编码基因中,coxl基因多态位点的比例最低,仅为29.46%;nad2、nad4、nad5三个基因的多态位点不仅比例较高,而且基因的长度较长,从而拥有最多的多态位点.因此,nad2、nad4和nad5基因可以coxl基因辅助的分子标记.  相似文献   

3.
10种软骨鱼线粒体基因组特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
综合分析了软骨鱼10个物种的线粒体基因组全序列,全面揭示软骨鱼线粒体基因组的基本特征、蛋白质编码基因和差异位点等.软骨鱼10个物种线粒体基因组均编码后生动物标准的37个基因,而且其基因排列完全相同.真鲨目和鳐形目线粒体基因组的13个蛋白质编码基因的Ka/Ks比值都远远低于1(0.019 1~0.156 4),显示出较强的纯化(负)选择.基于线粒体基因组构建的系统发育树结果显示,软骨鱼纲分为两支:全头亚纲和板鳃亚纲.在板鳃亚纲内部,鳐形目和鲼形目聚为一支;真鲨目、鼠鲨目、须鲨目、虎鲨目和角鲨目聚为一支,其亲缘关系为:{[(真鲨目+鼠鲨目)+须鲨目)]+虎鲨目}+角鲨目.软骨鱼线粒体基因组差异位点分析表明,在软骨鱼群体遗传的研究中,had5和nad4基因是理想的分子标记,可以作为coxl基因辅助的分子标记,用于分析软骨鱼不同群体之间的遗传多样性,为其生物多样性的保护及合理利用其生物资源提供更多保障.  相似文献   

4.
长臂虾科线粒体基因组特征分析及分子标记探讨   总被引:1,自引:0,他引:1  
通过常规PCR和长PCR扩增获得脊尾白虾的线粒体DNA,采用鸟枪法测序、序列组装获得脊尾白虾的线粒体基因组全序列.结合罗氏沼虾和沼虾的线粒体基因组,分析了长臂虾线粒体基因组的基本特征、基因排列、蛋白质编码基因和基因变异程度等.与泛甲壳动物线粒体基因组的原始排列相比,2个沼虾的线粒体基因组的基因排列完全一致;而脊尾白虾线粒体基因组却存在2个tRNA基因的易位.长臂虾科线粒体基因组主编码基因的变异特征分析揭示了coxl基因多态位点的比例最低,仅为25.5%;而3个基因(nad2、nad4和nad5)不仅多态位点的比例较高,而且基因的长度较长,从而拥有最丰富的多态位点.因此,nad2、nad4和nad5基因可以作为分子标记,用于分析长臂虾不同群体之间的遗传多样性,为长臂虾生物多样性的保护及合理利用其生物资源提供更多保障.  相似文献   

5.
对虾科线粒体基因组特征及基因差异位点分析   总被引:1,自引:0,他引:1  
通过长PCR扩增获得凡纳滨对虾和中国明对虾的线粒体DNA,进而采用步移测序、序列拼接获得2个对虾类线粒体基因组的全序列.结合斑节对虾、日本囊对虾、细角滨对虾和加州美对虾的线粒体基因组,初步揭示了对虾科线粒体基因组的基本特征.6个对虾类线粒体基因组的基因排列与泛甲壳动物线粒体基因组的原始排列完全一致.对虾类线粒体基因组所有的主编码基因中,变异程度最高的是nad2和nad6基因.因此,nad2和nad6基因可以作为coxl基因辅助的分子标记,为对虾类生物多样性的保护及对虾类生物资源合理、高效利用等诸多方面提供参考.  相似文献   

6.
申欣 《水产科学》2012,31(9):554-559
综合利用通用引物PCR和长PCR扩增,获得可口革囊星虫的线粒体DNA,结合鸟枪法和引物步移法获得可口革囊星虫的线粒体基因组。比较可口革囊星虫与方格星虫线粒体基因组,所有的37个基因均在同一条链上编码。2个星虫动物线粒体基因组蛋白质编码基因的起始、终止密码子及氨基酸长度存在差异。2个星虫动物的线粒体基因组,存在6个保守的基因区块:(1)nad6-cob-P-S2-C-M,(2)I-K-nad3-F,(3)nad4L-nad4-L2,(4)nad1-W-atp6,(5)nad5-S1及(6)nad2-cox1。去除转运RNA而仅比较蛋白质编码基因和核糖体RNA,则2个星虫动物线粒体基因组主编码基因的基因排列完全一致,均为:cox1-cox2-atp8-cox3-nad6-cob-srRNA-lrRNA-nad3-nad4L-nad4-nad1-atp6-nad5-nad2。星虫动物、环节动物和螠虫动物线粒体基因组共有5个保守区块:(1)cox1-cox2-atp8,(2)nad4L-nad4,(3)srRNA-lrRNA,(4)cox3-nad6-cob,(5)atp6-nad5。在15个主编码基因中,nad5基因和nad4基因变异位点数最多,因此可作为备选的分子标记,用于分析星虫动物不同物种和群体之间的生物多样性。  相似文献   

7.
磷虾类线粒体基因组的特征和基因排列比较   总被引:1,自引:0,他引:1       下载免费PDF全文
利用长PCR扩增获得太平洋磷虾的线粒体DNA,结合鸟枪法和引物步移法测定太平洋磷虾的线粒体基因组。结果表明,太平洋磷虾线粒体基因组全长为16898bp,在最大非编码区中存在一个串联重复区域(4.7×154bp)。在15个主编码基因中,变异位点数最多的是nad5基因(319~321个),其次为nad4基因(284~285个)和cox1基因(232~233个)。因此,nad5基因和nad4基因可以作为候选的分子标记,用于分析磷虾类不同的物种和群体之间的生物多样性。对比泛甲壳动物的原始排列,太平洋磷虾和南极磷虾线粒体基因组共享3个转运RNA基因(tRNALeu(CUN)、tRNALeu(UUR)和tRNATrp)的易位。与太平洋磷虾线粒体基因组相比,南极磷虾线粒体基因组存在1个转运RNA基因(tRNAAsn)的重复和1个转运RNA基因(tRNAIle)的易位。太平洋磷虾和南极磷虾之间的基因排列并不完全一致,说明在磷虾类内部线粒体基因组的基因排列顺序并不保守。  相似文献   

8.
鲟形目鱼类9个物种线粒体基因组的基因组成高度保守,均编码37个基因,长度为16 438bp(达氏鲟)~16 760bp(欧洲鳇)。主编码链的A+T含量为53.3%(密苏里铲鲟)~54.6%(中华鲟和匙吻鲟)。9个蛋白质编码基因(atp6、atp8、cob、cox1、cox3、nad1、nad3、nad4和nad4L)编码氨基酸数目相同,分别为227、55、380、517、261、324、116、460和98个。15个主编码基因的差异位点分析表明,在鲟形目鱼类分子生态和群体遗传的研究中,nad5、nad4、cox1和cob基因是理想的分子标记,可用于分析其不同物种和群体之间的遗传多样性。在9种鲟形目鱼类中,遗传距离最小的是中华鲟与俄罗斯鲟(0.0070),遗传距离最大的是闪光鲟与白鲟(0.1777)。2个科之间的遗传距离远远大于科内部的遗传距离,因此支持传统的科级分类。基于线粒体基因组的系统发育结果表明,鲟形目鱼类分为2支:鲟科的7个物种和匙吻鲟科的2个物种分属2个类群(BPN=100,BPM=100,BPP=100),这与经典的系统分类观点一致。隶属于鲟属的中华鲟、俄罗斯鲟及闪光鲟与欧洲鳇聚类,支持率非常高(BPN=100,BPM=100,BPP=100),而将同为鲟属的高首鲟和达氏鲟排除在外,从而表明,线粒体基因组的数据支持将欧洲鳇并入鲟属。基于线粒体基因组数据支持鲟科内部的亲缘关系为:{[(中华鲟+俄罗斯鲟)+闪光鲟]+欧洲鳇}+(高首鲟+达氏鲟),密苏里铲鲟与它们关系最远。  相似文献   

9.
基于COⅠ序列绒螯蟹属DNA条形码和遗传多样性研究   总被引:1,自引:0,他引:1  
对绒螯蟹属的中华绒螯蟹如东和七里海群体、日本绒螯蟹、合浦绒螯蟹及狭颚绒螯蟹共80条线粒体COⅠ片段进行扩增和测序,并与GenBank中绒螯蟹属的台湾绒螯蟹2条和近方蟹属的绒毛近方蟹19条COⅠ基因序列进行联配分析。结果显示,101条序列包含44种单倍型,序列组成表现明显的碱基偏倚性。中华绒螯蟹如东、七里海群体与日本绒螯蟹间的遗传距离分别为1.210%和1.078%,明显低于COⅠ基因DNA条形码鉴别种的遗传距离为2%的阈值,表明中华绒螯蟹和日本绒螯蟹为同一物种;而合浦绒螯蟹与中华绒螯蟹如东和七里海群体及与日本绒螯蟹的遗传距离分别为4.823%、5.101%以及5.011%,明显大于2%的鉴别阈值,说明合浦绒螯蟹为独立的种。以绒毛近方蟹为外群,基于群体内及群体间的遗传距离构建的邻接树显示,中华绒螯蟹与日本绒螯蟹聚在一起,合浦绒螯蟹则聚成单系。本文测序的5个群体除狭颚绒螯蟹外,其余均具有遗传多样性,单倍型多样性为0.593±0.144~0.779±0.068,核苷酸多样性为0.00156~0.01336;此外,中华绒螯蟹如东群体与日本绒螯蟹、合浦绒螯蟹和中华绒螯蟹七里海群体分别共享单倍型H1、H2和H3,说明这些蟹类可能有种质资源混杂或是遗传污染的现象。  相似文献   

10.
中华绒螯蟹种质研究进展   总被引:18,自引:3,他引:18       下载免费PDF全文
总结我国在中华绒螯蟹形态学、养殖性能、细胞遗传学、生化遗传学及分子遗传学方面的种质研究的主要成果 ,归纳中华绒螯蟹不同种群在形态、细胞、生化、分子等层次上的遗传差异。在形态学研究方面 ,运用形态多元分析 ,建立不同种群绒螯蟹从幼蟹到成蟹的量化判别函数 ;在生化遗传和分子遗传研究方面 ,找到中华绒螯蟹区别于其他绒螯蟹的生化遗传标记和分子遗传标记 ,以及中华绒螯蟹不同种群由南到北的分子遗传渐变标记 ;在养殖性能方面 ,阐明中华绒螯蟹不同种群在幼蟹和成蟹阶段的养殖性能 (包括蜕壳、生长、性腺发育、性成熟及生殖洄游等 )差异和特点  相似文献   

11.
本研究测定了颈链血苔虫的线粒体基因组。它是一个双链闭合环状分子,全长14144bp,与其他后生动物相比相对较小;颈链血苔虫线粒体基因组所有的基因都编码在同一条链上。相比其他后生动物它具有独特的基因排列顺序,而且与已发表的两个苔藓动物线粒体基因组相比,基因排列顺序也显著不同,这说明苔藓动物线粒体基因组经历了大规模的基因重排过程。基因排列顺序比较分析的结果支持苔藓动物为原口动物的观点,提示我们基因排列顺序的比较分析可能会成为苔藓动物门进化地位确定的良好途径。  相似文献   

12.
为了解鳀科鱼类的线粒体全基因组序列结构特征及系统发育信息,以期为进化遗传学研究和分子标记的选取提供参考依据,对已知的10种鳀科鱼类的线粒体全基因组进行分析。结果显示:1)鳀科线粒体基因组全序列长度在16 660 bp到17 069 bp之间,基因组的结构和基因排列顺序与其它硬骨鱼类一致。2)比对后获得一致序列长度为15 704 bp(不含D-loop),其中变异位点5 570个,占所有位点数的35.5%。在编码基因中,序列变异程度和Kimura双参数遗传距离最大的是ND6基因(分别是47.5%和0.276),最小的是tRNA拼接序列(分别为18.7%和0.072)。3)基于Ka-Ks的Z检验和Tajima’s D检验表明蛋白质编码基因主要受到净化选择(即负选择,purifying selection)的作用;其中12个蛋白质编码基因(ND6除外)有强烈的净化选择(Ka/Ks<1),而ND6基因受正选择(positive selection)影响较大(Ka/Ks>1)。4)ND4、ND2和Cytb是进行鳀科鱼类系统发育分析的较为理想的分子标记。  相似文献   

13.
与传统的母系遗传不同,双壳贝类线粒体有M和F型2种mt DNA,称为双单亲遗传(doubly uniparental inheritance,DUI)。为了探究DUI的形成机制,实验利用RACE方法得到三角帆蚌M、F-type COⅡ基因的cDNA全长;荧光定量检测各时期各组织中M、F-type COⅡ基因的表达。结果发现,(1)M-type COⅡ基因的cDNA序列全长1244 bp,F-type COⅡ基因的cDNA序列全长808 bp,M型3′端较F型有一段546 bp的特异性延长序列;跨膜结构预测显示M-type COⅡ基因3′特异性延伸区域有4个跨膜结构,推测这段延伸序列具有一定的功能性;(2)早期幼龄(胚胎期-5月龄)三角帆蚌的组织团中,M、F-type COⅡ基因均能检测出,且同时期中F-type COⅡ基因的表达量显著高于M-type COⅡ;(3)6月龄蚌各组织中,F-type COⅡ基因在各组织中表达量明显高于M型的表达量,而M-type COⅡ基因在性腺中表达明显高于其他组织;(4)一龄雌性各组织中,M、F-type COⅡ基因均有表达;而一龄雄性各组织中,M-type COⅡ基因仅在性腺中表达;(5)二龄雌性各组织中,M、F-type COⅡ基因均有表达;二龄雄性各组织中,F-type COⅡ基因除性腺外的其他组织中均有低量表达,M-type COⅡ基因仅在性腺中表达,且表达量较高。研究表明,在三角帆蚌雌雄个体发育过程中,M-type mt DNA在组织中选择性降解或聚集。  相似文献   

14.
ABSTRACT:   In this study, to develop a technique that enables authentication of processed seafood, the complete nucleotide sequence of the mitochondrial genome for the Japanese flying fish Cypselurus hiraii was determined. Three segments spanning the entire genome were amplified using polymerase chain reaction, and products were subsequently used as templates for direct sequencing with 60 primers. The genome (16 528 base pairs) was found to contain the same 37 genes (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes) as those found in other vertebrate mitochondrial genomes, with the gene order being identical to that typical of vertebrates. A major non-coding region between the tRNAPro and tRNAPhe genes (868 base pairs) appears to be the control (D-loop) region, as it has several conserved blocks characteristic of control regions.  相似文献   

15.
鲂属鱼类线粒体基因组的比较及其系统发育分析   总被引:3,自引:1,他引:2  
基于GenBank中团头鲂线粒体基因组全序列和三角鲂、厚颌鲂、广东鲂的部分线粒体基因组序列,设计引物扩增出三角鲂、厚颌鲂和广东鲂3种鱼线粒体基因组全序列,同时对4种鲂属鱼类线粒体基因组全序列进行了比较分析。结果表明,4种鲂属鱼类线粒体基因组基因排列顺序完全相同,排列紧密,均包含13个蛋白质编码基因、22个tRNA、2个rRNA、1个非编码控制区(D-loop区)和1个轻链复制起始区(OL区)。除ND6和8个tRNA在L链上编码外,其余的基因均在H链上编码。4种鲂属线粒体基因组13个蛋白质编码基因中,均呈现出较强的A+T偏向性和C碱基偏好。全序列比对结果显示,共有758个变异位点,其中非简约性信息位点有691个,占总变异位点的91.16%,简约性信息位点有67个,仅占总变异位点的8.84%。22个tRNA基因中只有11个存在种间变异,共23个变异位点,主要发生在tRNA三叶草结构的TΨC和DHU臂环上。13个蛋白质编码基因中共检测出626个变异位点,这些变异主要发生在密码子第三位,占总变异位点的82.59%,其中变异位点数最多的是Cyt b基因,达84个,其次是ND 4基因(83个)。因此,Cyt b和ND4基因可作为备选的分子标记,用于鲂属群体间的遗传学研究。基于4种鲂属鱼类线粒体基因组全序列构建的ML树和BI树均显示,三角鲂与厚颌鲂的亲缘关系最近,团头鲂与它们的亲缘关系相对较近,而广东鲂与前述3种鲂属鱼类的亲缘关系均较远。  相似文献   

16.
本研究以库页岛马珂蛤(Pseudocardium sachalinense)为研究对象,讨论COI和16S rRNA两种DNA条形码在贝类的遗传多样性、分子进化和种类鉴定的适用性,并利用两种条形码评估库页岛马珂蛤的遗传多样性。本文在获得库页岛马珂蛤线粒体全基因组的基础上,测序获得库页岛马珂蛤群体的COI和16S rRNA序列,发现COI基因核苷酸多样性为0.00195,高于16S rRNA核苷酸多样性(0.00073)。基于COI基因的单倍型多样性为0.76,大于16S rRNA的单倍型多样性(0.318)。其次,用全线粒体基因组构建8种贝类的系统进化树为参考,发现基于COI和16S rRNA的系统进化树与参考一致,提示这两种条形码片段可用于推断贝类的分子进化关系。最后,分别对马珂蛤科和帘蛤科15属17种贝类的COI基因和16Sr DNA进行序列比较,发现COI基因和16S rRNA的种间遗传距离均是种内距离的62倍。以上结果说明,16S rRNA与COI基因一样,能有效地构建马珂蛤科和帘蛤科的系统发育关系和物种鉴定,但在分析库页岛马珂蛤的遗传多样性时利用COI基因比16S rRNA能发现更多的遗传变异。  相似文献   

17.
In this study, we describe the complete mitochondrial genomes of Gyrodactylus brachymystacis and Gyrodactylus parvae infecting rainbow trout (Oncorhynchus mykiss) and the invasive topmouth gudgeon (Pseudorasbora parva), respectively. The two circular genomes have a common genome organization found in other Gyrodactylus species. Comparative analyses of mitochondrial genomes from six Gyrodactylus species were carried out to determine base composition, codon usage, transfer RNA and ribosomal RNA genes, major non‐coding regions, and nucleotide diversity within the genus. We also provide the first universal models of the secondary structures of rrnS and rrnL for this group thereby promoting utilization of these genetic markers. Universal primers provided herein can be used to obtain more mitochondrial information for pathogen identification and may reveal different levels of molecular phylogenetic inferences for this lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号