首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
引黄灌区潜水蒸发规律与计算方法研究   总被引:4,自引:2,他引:2  
潜水蒸发是浅层地下水向土壤水和大气水转化的重要途径,也是地下水的主要消耗项。根据惠北试验站2003-2008年实测的逐日潜水蒸发资料,分析了气象因素、作物因素、土壤因素、地下水埋深以及降雨量对潜水蒸发强度的影响规律。利用叶水庭指数模型建立了不同时段的潜水蒸发计算模型,并进行了验证,分析了日指数模型计算结果偏大的原因。基...  相似文献   

2.
为确定限制引水背景下河套灌区土壤水-地下水动态及其转化关系,为优化农田水管理策略提供理论依据,选取河套灌区典型斗渠区域,基于2年土壤水、地下水的监测数据,分析在不同作物种植区、不同灌溉期的农田土壤水、地下水的动态变化规律。运用水量平衡法对地下水浅埋区农田土壤水与地下水的转化关系进行定量研究,结果表明:生育期内农田土壤水分变化属于“灌溉降水入渗补充-腾发消耗型”;受灌溉影响,不同时期地下水埋深动态具有显著的灌溉型特征,土壤水渗漏补给地下水明显抬升地下水位,地下水排水和潜水蒸发又降低地下水位;在作物生育期内,土壤水与地下水进行双向补给,且不同时期具有不同的转化特征;研究区2年生育期内灌溉降水补给土壤水分别为544.56mm和541.85mm,平均腾发量为465.5mm和434.8mm,土壤储水量减少61.96mm和63.1mm,土壤水补给地下水为207.73mm和236.94mm。研究可为当地及相近地区农业节水灌溉提供科学依据。  相似文献   

3.
利用辽源市1980-2011年地下水动态监测数据,采用地质、水文地质学理论和方法,分析研究区地下水动态变化规律,及地下水动态类型。同时运用BP神经网络模型对辽源市地下水水位进行模拟预测。结果表明:研究区的地下水动态类型主要有降水入渗-蒸发型、径流型、降水入渗-开采型;利用BP神经网络技术建立辽源市地下水位预测模型,预测结果较为理想;研究区地下水位多年来呈下降趋势,2006-2012年地下水位下降2m左右。通过对辽源市地下水动态特征的研究,为今后对辽源市地下水的研究和生产、生活的开采利用提供了科学依据和指导意义。  相似文献   

4.
由于地下水埋深受气象因素影响呈现年周期变化,且因气候的波动和生态环境的变迁,使地下水埋深在不同年份相同阶段并不相同。将时间序列的季节模型用于人民胜利渠古黄河背河洼区、漫滩区月平均地下水埋深动态建模之中。计算结果表明,模型为疏系数季节模型,模型精度显著高于自回归模型。  相似文献   

5.
【目的】揭示不同降水年型下东北寒区水稻需水对地下水埋深变动与灌溉的响应规律,进一步优化寒区水稻灌溉制度。【方法】以黑龙江庆安和平灌区灌溉试验站多年水稻灌溉试验及2017年地下水动态观测数据为依据,分析不同灌水模式下水稻耗水及地下水变化动态,验证AquaCrop模型在东北寒区水稻生长模拟中的适用性,并用于模拟分析25%、50%、75%降水年型下水稻需水与不同地下水埋深的相互关系及灌水量的响应规律,提出适宜该地区水稻高产的地下水埋深范围及其生育期净灌水量。【结果】①水稻生育期内,地下水埋深先浅后深,其中,分蘖期、拔节孕穗期和抽穗开花期耗水量大,灌溉和降雨较多,地下水埋深较浅;②构建了3种降水年型下ET与GD、I的多元回归方程,综合考虑了水稻需水量与地下水埋深、生育期灌水量之间的相关关系,可用于稻田高效耗用水管理和地下水资源持续利用;③为实现东北寒区水稻高产和地下水埋深基本稳定的双重目标,地下水埋深应控制在2.0~2.5 m之间,水稻生育期净灌水量为:枯水年不宜低于现状灌水量,即300 mm;丰水年和平水年净灌水量可适当减少至现状灌水量的0.8倍,即240 mm。【结论】提出了适宜该地区水稻高产的地下水埋深范围及生育期净灌水量,为促进我国东北地区节水增粮,保护湿地生态环境,提高农业用水效率提供了理论依据。  相似文献   

6.
不同地下水埋深下冬小麦和春玉米非充分灌溉制度研究   总被引:2,自引:0,他引:2  
根据山西省中心灌溉试验站多年灌溉试验资料,首先,分析计算无地下水的条件下(地下水埋深3.0m)冬小麦和春玉米的经济灌溉定额,在此基础上,参考当地作物关键灌水期、地下水补给量及降水等试验资料,进一步确定两种作物在6种不同地下水埋深条件下不同水文年型的非充分灌溉制度。研究结果可为当地农业实际生产提供参考,具有较高的实际应用价值。  相似文献   

7.
由于地下水埋深受气象因素影响呈现年周期变化,且因气候的波动和生态环境的变迁,使地下水埋深在不同年份相同阶段并不相同。将时间序列的季节模型用于人民胜利渠古黄河背河洼区,漫滩区月平均地下水埋深动态建模之中。计算结果表明,模型为疏系数季节模型,模型精度显著高于自回归模型。  相似文献   

8.
以我国大型圩区为研究对象,开发出一通用的地下水溶质运移随机模拟数学模型,用以模拟圩区地下水中污染物运移与累积情况。分析了大气降水、地表蒸发等随机变量的模拟预测方法,应用随机理论及时间序列理论对上述动态因素进行动态模拟,建立了不同边界条件的圩区地下溶质运移随机模拟模型。应用MODFLOW软件进行数值分析,给出特征点处地下水中总氮浓度随时间的变化规律,并提出现状封闭率条件下的适宜水面率及年排污最大量。结果表明,地下水总氮含量模拟值与实测值最大相对误差11.67%。  相似文献   

9.
农田排水条件下降雨补给与地下水埋深关系的试验研究   总被引:1,自引:0,他引:1  
以室内一维土柱试验和室外水平衡小区观测资料为基础 ,对农田排水条件下降雨入渗补给与地下水埋深关系进行了分析 ,根据降雨、蒸发与地下水埋深关系相似的规律 ,仿照国内外排水计算中较为广泛应用的阿维里扬诺夫经验公式的结构形式 ,建立起降雨入渗补给与地下水埋深的关系 ,并采用室内外试验资料对该关系式进行了验证。  相似文献   

10.
以室内一维土柱试验和室外水平衡小区观测资料为基础,对农田排水条件下降雨入渗补给与地下水埋深关系进行了分析。根据降雨,蒸发与地下水埋深关系相似的规律,仿照国内外排水计算中较为广泛应用的阿维里扬诺夫经验公式的结构形式,建立起降雨入渗补与地下水埋深的关系,并采用室内外试验资料对该关系进行了验证。  相似文献   

11.
【目的】查明平阴岩溶地下水位对降水量、黄河水位响应的时滞差异。【方法】选取2007—2018年2个沿黄岩溶水位监测数据、同期降水量和黄河水位资料,采用互相关分析、连续小波变换和交叉小波变换对岩溶水位与降水量、黄河水位的相关性进行了分析。【结果】①降水量、岩溶水位的互相关系数具有明显的12个月的周期,黄河水位周期性不强。岩溶水位与降水量、黄河水位之间存在1~8个月和0~10个月的时间滞后。②降水量和岩溶水位存在0.86~1.20 a和0.86~1.36 a的连续主震荡周期,黄河水位存在1 a和3 a的周期变化特征。③岩溶水位对降水量、黄河水位的滞后时间为110.46~164.39 d和105.77~161.88 d,黄河水与岩溶地下水之间径流速度为21.62~25.53 m/d。【结论】平阴岩溶水位对黄河水位的时滞略小于对降水量的时滞。  相似文献   

12.
气候变化和人类活动对灌区地下水埋深的影响   总被引:1,自引:0,他引:1  
[目的]探析气候变化和人类活动对灌区地下水埋深的影响.[方法]利用年代波动性分析、突变检验、灰色关联分析、敏感性分析、双累积曲线法和相对贡献率分析了人民胜利渠灌区1952-2013年地下水埋深及其影响因素的变化和突变特征,并识别了地下水埋深与各影响因素间的响应特征.[结果]人民胜利渠灌区地下水埋深呈明显增加趋势(0.8...  相似文献   

13.
采用排水式蒸渗仪试验,研究了不同地下水埋深时,甜椒需水量和地下水利用量的变化规律及与外界环境因子的关系。分析和模拟了甜椒作物系数,并与FAO-56推荐作物系数值进行了比较。结果表明,地下水埋深为0.6~0.9m时,地下水与降雨利用量占需水量的40%~50%,灌溉量较低。地下水埋深较浅时,需水量与地下水利用量与蒸发量、气温和地温具有显著的线性关系。地下水埋深较深时,需水量主要受降雨的影响,与环境因子的相关性较小;地下水利用量与蒸发量、气温、地温及饱和水气压差仍具有显著的线性关系。甜椒全生育期作物系数为1.35,与移栽后旬数、地温和需水系数分别表现出3次、2次和3次多项式的关系。生长中期和后期,作物系数分别为1.25和1.25~1.1,高于FAO-56推荐值。研究结果为蔬菜类作物节水灌溉制度的制定和高效灌溉管理提供参考。  相似文献   

14.
利用长岭县50眼监测井1980-2005年的地下水位监测数据、降水量、蒸发量和人工开采量资料,采用Kriging方法对地下水位进行空间插值,得出地下水流场的时空变化特征。在充分考虑研究区地质、水文地质的情况下,利用因子关联分析和因子贡献度分析方法,对地下水流场时空变化特征的驱动力进行了研究。结果表明:11980-2005年地下水位呈现出整体东南高西北低的特征,地下水位先降低后增加,2000年为转折点。地下水经历基本均衡期、负均衡期和水位回升期,地下水流场在西北部和东南部均出现异变现象。2实际补给量、人工开采量和地下水位具有较好的关联性,二者对地下水位的贡献度呈相反规律。20世纪80年代,实际补给量和人工开采量对地下水位的影响程度相当;90年代,人工开采量对地下水位的影响程度较大。3气象因素(降水量和蒸发量)是研究区地下水流场异变的重要因素,而人工开采是主导因素。4合理的地下水资源开采对于地下水恢复有较好的促进作用,6 000~7 000万m~3开采量对于研究区是合理的。该研究对于认知区域地下水演化和地下水资源优化配置有较好的指导意义。  相似文献   

15.
为了研究渠系引水量以及气象因素与地下水埋深之间的联系,以河套灌区为研究对象,通过描述性统计分析方法,建立起引水量———地下水埋深、水面蒸发量———地下水埋深关系图。结果表明:在生育期内(4月-11月),引水量、蒸发量与地下水埋深的区域整体变化趋势较好,相关性显著。因此,充分研究出引水量、水面蒸发量对地下水埋深的关系,将对于灌区地下水的合理开采与配置以及灌区全面实施节水改造工程具有重要的意义。  相似文献   

16.
淮北平原气象因素对裸地潜水蒸发的影响   总被引:1,自引:1,他引:0  
【目的】理清气象因素对潜水蒸发的影响。【方法】采用五道沟水文实验站62套原状土蒸渗仪及气象场1991─2015年长系列实验资料,分析了潜水蒸发与水面蒸发、气温、降雨及地温的关系,并比较了气象因素对砂姜黑土与黄潮土潜水蒸发量影响的差异。【结果】砂姜黑土与黄潮土地下水埋深为0时的潜水蒸发均比水面蒸发小,且都与水面蒸发呈线性相关关系(R~2>0.9)。潜水蒸发与气温年内变化趋势基本一致,气温对砂姜黑土在地下水埋深小于0.2 m影响较大,大于0.4 m影响较小;对黄潮土在地下水埋深小于1.0 m影响较大,大于2.0 m影响较小。地温是潜水蒸发的能量来源之一,5—8月,潜水蒸发随地温的增加而增大;11月—次年2月,潜水蒸发随地温的增加而减小,而3、4月和9、10月处于转折阶段,规律性不明显。对多年平均月潜水蒸发与地温进行曲线拟合,采用高斯曲线拟合最好(R~2均大于0.9)。【结论】气象因素对地下水埋深浅的潜水蒸发影响明显,且对黄潮土的影响大于砂姜黑土,可用地温计算潜水蒸发。  相似文献   

17.
基于RBF神经网络的地下水动态预测   总被引:1,自引:0,他引:1  
以内蒙古自治区巴彦淖尔市金泉工业园区为例,基于园区B248号长观井2001-2008年的地下水埋深资料,首先建立了地下水埋深RBF神经网络预测模型,而后对该模型的模拟结果作误差分析,并将相应值与BP网络模型进行对比。RBF神经网络模型和BP网络模型的最大相对误差分别为9.88%和19.67%,最大绝对误差分别为0.81和1.56,均方误差分别为0.19和0.98。显然,RBF神经网络具有较高的预测精度和较强的非线性映射能力。用上述训练好的RBF神经网络模型对研究区2009-2013年平水年条件下的地下水埋深进行预测,结果表明,研究区已出现地下水位持续下降的趋势。最后,根据地下水资源保护规划方案,在逐时段压缩地下水开采量10%的情况下,研究区2025年即可恢复到2001年的地下水水位值。  相似文献   

18.
不同地下水埋深条件下农田潜水蒸发试验研究   总被引:2,自引:2,他引:0  
不同潜水埋深下裸地逐旬日平均潜水蒸发过程表现为:夏季最强,春季和秋季较弱,冬季最弱。随着地下水埋深的增加,潜水蒸发量呈现降低的趋势。裸地累计潜水蒸发量随埋深增大而减少,二者符合幂函数关系。当潜水埋深较小时,潜水蒸发与直径20 cm蒸发皿的水面蒸发量的关系接近直线,随着埋深加大,当水面蒸发强度增大到某种程度,曲线的斜率逐渐变小。降水对裸地潜水蒸发的影响主要是2个方面的作用:有降水时大气蒸发能力接近于零,同时降水补给了土壤水而削弱了毛管作用从而降低了潜水蒸发。  相似文献   

19.
应用DRAINMOD对测坑控制排水条件下地下水位的模拟分析   总被引:1,自引:0,他引:1  
为研究控制排水措施对农田地下水位的影响,在湖北省荆州市四湖工程管理局丫角排灌试验站进行了测坑控制排水试验,并利用DRAINMOD模型对不同试验方案下地下水位进行数值模拟。模拟结果表明:在棉花生育期内,地下水位模拟结果和实测结果的一致性较好,该模型可有效地模拟预测水测坑控制排水条件下地下水位特性;控制排水措施能有效调控地下水位.  相似文献   

20.
气候变化对北京地下水资源的影响分析   总被引:2,自引:0,他引:2  
总结了北京地下水资源概况,对近60 a来北京气温、降水、蒸发的变化特征进行了分析。结果表明:北京气温在波动中增暖,增幅约为0.08℃/a,而年降水量表现为下降趋势,平均变幅为-3.45 mm/a;年总水面蒸发量表现为明显的下降趋势,平均变幅为-8.04 mm/a。降水减少加之超量开采给地下水资源带来不利影响,导致地下水位持续下降,局部浅层含水层疏干,1999-2013年,第四系地下水累计亏损量达65.82亿m3,年均亏损量4.39亿m3,地下水水质也随之变差。平原区地下水蒸发量由1960-1980年的年均4.95亿m3/a,降至2001年以来的年均0.44亿m3/a。气温对地下水的影响是间接和微弱的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号