首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 143 毫秒
1.
以1对近等基因系(NILs)构建的分离群体(NT4092/NT411)F1为材料,采用自然发病鉴定方法,以行发病率为表型值,在3种环境下对各株系进行粗缩病抗病性鉴定。应用完备区间作图法(ICIM)对玉米粗缩病抗性QTL进行分析,分离群体(NT4092/NT411)F1在两地三点检测到3个QTL,均位于第8染色体上,LOD值分别为24.03、10.29和17.02,分别解释了41.37%、20.51%和36.04%的表型变异,是能够稳定表达的主效QTL。泰安5月份和济宁5月份环境下检测到的主效QTL均位于phi121和UMC1817标记区间之内,遗传距离为15.47 cM,标记区间物理距离为92Mb;泰安6月份环境下检测到的主效QTL位于M6和M24标记区间之内,遗传距离为0.86 cM,标记区间物理距离为17.9 Kb。通过对4个分离群体辅助选择的可行性分析表明,这些主效QTL与玉米粗缩病抗性间呈极显著相关,其标记在CL313、1145、沈137等系谱来源相同或相近的自交系中可应用于抗玉米粗缩病育种的辅助选择。  相似文献   

2.
基于昌7-2导入系发掘干旱胁迫下玉米产量相关QTL位点   总被引:1,自引:0,他引:1  
以昌7-2为轮回亲本,自交系郑独青为供体亲本,采用回交和定向选择的方法构建高代导入系群体。通过玉米56K芯片对极端株系进行基因分型,以IciMapping逐步回归分析法进行穗重、穗粒重以及百粒重等QTL定位。结果表明,共获得分布于玉米第1、3、5、9、10共5条染色体上的10个QTL位点。其中,与穗重、穗粒重相关的各4个,与百粒重相关的2个。第1、5、10染色体上存在同时控制穗重和穗粒重的相同位点,加性效应均来源于郑独青,贡献率均在22%以上。此外,第10染色体相同位点还同时控制1个微效加性的百粒重QTL。在QTL定位的基础上,获得了多位点聚合的导入系,同时携带第1、5、10染色体上3个QTL位点的导入系,其产量性状表现优于轮回亲本昌7-2。  相似文献   

3.
粒形是影响小麦籽粒产量和品质的重要参数,是由多基因控制的复杂数量性状。为发掘控制小麦粒形相关的真实主效数量性状位点(quantitative trait loci, QTL),本研究利用BioMercator 4.2软件,以小麦高密度分子标记遗传图谱为参考图谱,对来自不同遗传作图群体的113个控制小麦粒长的QTL和86个控制粒宽的QTL进行图谱整合、映射以及QTL元分析。通过建立QTL一致性图谱,获得18个控制小麦粒长和8个控制粒宽的一致性QTL(meta quantitative trait loci, MQTL)位点,置信区间最小可达到0.57 cM,主要分布在2B、2D、3A、3B、4B、5A、5B和7D染色体上。在5A染色体Xgwm293~Xgwm304和Xgpw2120~Xgpw2273a标记区间内,预测到7个与小麦粒长和粒宽相关的候选基因。本研究为小麦粒形QTL精细定位以及分子标记辅助选择育种提供理论依据。  相似文献   

4.
水稻F1花粉不育性近等基因系导入片段的分析   总被引:12,自引:1,他引:12  
 选用158个亲本间有多态性的微卫星标记,对50个F[sub]1[/sub]花粉不育近等基因系的导入片段进行了分析。50个近等基因系中共检测出260个导入片段,平均每个近等基因系有5.2个。其中100个F[sub]1[/sub]花粉不育基因所在的导入片段集中分布于第1、第3和第5染色体上,其余160个非F[sub]1[/sub]花粉不育基因所在的导入片段随机分布于各染色体上。统计分析表明,平均导入片段数和平均导入片段长度均随回交世代的增加而逐渐减少。BC[sub]3[/sub]代以后两者趋向稳定,导入片段数均少于4个,导入片段长度均在20 cM以下。  相似文献   

5.
开花期对玉米适应不同环境具有决定性作用,是重要的育种目标,对玉米开花期进行QTL定位是进行花期性状改良的基础工作。以玉米自交系黄早四和1462为亲本构建的F2:3群体为材料,结合高密度SNP标记对玉米抽雄期和散粉期进行QTL定位。结果表明,F2:3群体的抽雄期和散粉期呈正态分布,且两性状之间呈极显著相关。利用WinQTLcart 2.5软件的复合区间作图法共检测5个控制抽雄期的QTL,分别位于3、5、6、7、9号染色体上,贡献率在6.19%~26.39%;同时检测到4个控制散粉期的QTL,位于3、5、6、7号染色体上,贡献率7.48%~28.28%,这些QTL的基因作用方式以部分显性和超显性为主。共计发现3个主效QTL(贡献率超过10%),分别位于3号和6号染色体上。利用两个亲本的V6时期的茎尖进行转录分析,在主效QTL置信区间内共发现21个差异表达基因,其中包含可能控制玉米花期的候选基因。  相似文献   

6.
普通野生稻苗期耐冷性QTL的鉴定与分子定位   总被引:3,自引:0,他引:3  
 以两份普通野生稻核心种质资源DP15和DP30为供体、9311为受体构建染色体片段代换系鉴定苗期耐冷性QTL;利用苗期耐冷性最强的1个代换系构建QTL作图群体,用SSR标记对其主效QTL进行定位。研究结果表明,两个抗源DP15和DP30所含的苗期耐冷性QTL的数量、位点及耐冷性效应均存在明显的差异。在基本上覆盖两个亲本全基因组的230份BC4F2代换系中共发现19个苗期耐冷性QTL,分布在水稻12条染色体上,第3和第8染色体上有比较密集的苗期耐冷性QTL分布。这19个分布于全基因组的苗期耐冷性QTL被分别分离到不同的野生稻染色体片段代换系里,效应最小的微效QTL位点所在的代换系在苗期耐冷性鉴定中的活苗率仅为8%,而效应最大的主效QTL位点所在代换系的活苗率达到74%。这个主效QTL qSCT 3 1被定位在第3染色体着丝点附近长臂上的RM15031―RM3400区间,距离最近的标记RM15040、RM1164的遗传距离为1.8 cM。  相似文献   

7.
为加快AL型杂交小麦的发展,以不育系AL18A、恢复系99AR144-1及二者杂交F2代群体为材料,选用SSR标记和分离群体分组分析法进行育性恢复基因的QTL定位。结果表明,育性恢复由主效和微效基因共同控制,采用复合区间作图法分析,在1B染色体上检测到了1个主效恢复基因QTLqRf-1B-1,在5AL染色体上检测到了1个微效QTLqRf-5A-1。qRf-1B-1位于SSR标记Xbarc8与Xgwm413之间,与两标记的遗传距离分别为0.85cM和2.00cM,LOD值为14.06,加性效应为18.87,可解释22.43%的表型变异;qRf-5A-1位于SSR标记Xgwm595与Xgwm410之间,与两标记的遗传距离分别为10.00cM和0.10cM,LOD值为3.18,加性效应为12.32,可解释5.44%的表型变异。  相似文献   

8.
前期研究中将主效抗病QTL(qMrdd1)定位在第8染色体分子标记M103.4-M105.3之间,该抗病QTL表现为隐性基因遗传,可降低24.2%~39.3%的发病率。通过分子标记检测,在抗病系NT411(供体亲本)和感病系NT409(轮回亲本)回交多代的群体中,选择7个含有抗性QTL(qMrdd1)的杂合单株自交得到分离群体B1、B2、B3、B4、B5、B6、B7和来源于同一回交后代的两对抗感病近等基因系(B8-R、B8-S和B9-R、B9-S),利用这两对近等基因系与自交系A7110、Q319、CT03、昌7-2、43684、43683、43946组配13对杂交种,在植株整个生育期内无粗缩病病毒接种的条件下,在北京、海南和山东种植不同的材料并对7个分离群体和13对杂交种进行农艺性状调查,结果表明,7个分离群体中各基因型植株以及13对杂交种在株高、穗长、穗行数等农艺性状上差异不显著,qMrdd1基因对玉米产量性状不存在多效性现象,可以应用于抗粗缩病育种。  相似文献   

9.
为了解小麦条锈病抗病基因在染色体上的位置,对源自小麦杂交组合宁7840×Clark的重组自交系(RIL)群体进行了抗条锈病QTL分析。结果表明,在染色体1BS上检测到一个主效的QTL即QYr-hwwg-1B。该QTL由抗病亲本宁7840提供,位于SNP标记Xsnp3620和Xsnp5435之间,区间长度为2.5cM,可解释55.8%的表型变异。根据宁7840的小种抗性推测QYr-hwwg-1B可能是由来自1B/1R易位系的抗病基因Yr9引起的。抗性基因Yr9、Yr10、Yr15、Yr24、Yr26、YrH52和YrAlp均位于小麦1B染色体短臂的一端,形成一个抗条锈基因簇,并与SSR标记Xgwm11紧密连锁。另外,有56个SNP标记与该标记区间共分离,可以用于小麦抗条锈基因精细定位图谱的构建及分子标记辅助选择育种。  相似文献   

10.
小麦穗粒数是由多基因控制的复杂数量性状。为发掘控制小麦穗粒数(KNS)的真实主效数量性状位点(quantitative trait loci, QTL),本研究利用生物信息学手段,借助小麦高密度分子标记遗传图谱,对来自不同遗传作图群体的控制小麦穗粒数的163个QTL位点进行图谱整合、映射和元分析。结果表明,目标性状QTL在小麦21条染色体上不均匀分布,在2B染色体上最多,在7D染色体上最少;建立控制小麦KNS的QTL一致性图谱,最终获得35个一致性QTL(meta quantitative trait loci, MQTL)位点及其紧密连锁的候选分子标记,置信区间最小可达到0.55 cM。  相似文献   

11.
【目的】本研究旨在定位一个稻米垩白粒率高温耐性QTL,为外观品质育种及解析垩白粒率高温耐性的遗传机制提供依据。【方法】以非洲栽培稻耐热品种IRGC102309(Oryza glaberrima Steud.)和籼稻品种R9311(O. sativa L. subsp. indica Kato.)为亲本构建的栽培稻种间染色体片段导入系CSIL05-23为材料构建次级分离群体,结合人工气候室模拟灌浆期高温胁迫处理,采用垩白粒率高温钝感值为评价指标,对非洲栽培稻垩白粒率高温耐性 QTL 进行检测。【结果】 在BC6F2分离群体,利用单标记分析,发现第5染色体上的SSR标记RM1200与垩白粒率耐热性状极显著正相关(P=0.0005)。进一步利用BC6F3和BC6F4分离群体,采用QTL Cartographer 2.5软件和复合区间作图法在水稻第5染色体上的SSR标记RM1200-RM5796区间重复检测到一个灌浆期垩白粒率耐热性QTL, 命名为qHTCGR5,分别解释11.4%和17.5%表型变异。根据BC6F4分离群体的纯合重组体表型分组,利用置换作图方法将目标QTL同样定位在SSR标记RM1200-RM5796之间,遗传图距为1.3 cM,物理图距约为333.4 kb。【结论】 控制垩白粒率耐热性的qHTCGR5是一个能够用于稻米外观品质育种的新QTL。  相似文献   

12.
选取5个与bin2.09主效抗病位点紧密连锁的分子标记,利用含主效抗病位点的黄早四近等基因系1JD006为供体亲本,开展连续回交分子标记辅助选择育种,定向改良玉米自交系昌7-2的丝黑穗病抗性。结果表明,标记3M1-25选择效率最高,其次为标记MZA6393。结合分子标记辅助选择和田间接种鉴定,在BC2F2群体中筛选出背景回复率大于理论值87.50%的6个单株,BC3F2世代中筛选出背景回复率大于理论值93.75%的12个单株,其中6株回复率≥96.92%,田间接种发病率均低于40%。筛选出的6个BC3F3家系中除4JZ574-01外在主要农艺性状上与轮回亲本无显著差异。  相似文献   

13.
马铃薯晚疫病(Phytophthora infestans)和科罗拉多马铃薯甲虫(CPB)是马铃薯生产中最为严重的病虫害。培育高抗晚疫病和甲虫的马铃薯品种是加拿大马铃薯育种工作的重要组成部分。目前,我们实验室在二倍体1EBN墨西哥野生种中已鉴定出抗马铃薯晚疫病和甲虫的新基因,并利用原生质体融合技术成功的将其转移到栽培品种中。但是,培育出抗晚疫病和抗甲虫的马铃薯新品种仍然是一项艰难而繁杂的工作。为了加快分离抗性基因,建立与抗性基因紧密关联的DNA分子标记至关重要。本研究以感病的二倍体马铃薯品种S.cardiophyllum作为父本,与带有抗性基因的墨西哥野生种S.pinnatisectum杂交。用叶片离体鉴定的方法测试F1和BC1代群体的抗病性,从而筛选抗晚疫病和抗甲虫的植株。US-8/A2交配型病菌测试显示所有的F1代植株都表现出抗晚疫病,而在BC1群体中抗病与感病植株的比例为1:1。这个结果证明,在墨西哥野生种S.pinnatisectum中存在一个抗晚疫病的单显性基因Rpi1。马铃薯甲虫抗性检测中,BC1群体的抗虫性分离比例为1:3.这表明其对甲虫的抗性是由多基因遗传控制的。在F1和BC1群体中利用分子标记结合集团分离分析法(BSA)对S.pinnatisectum中的晚疫病抗性基因Rpi1进行精细作图。根据马铃薯第7条染色体上RFLP标记TG20A和CP56之间的EST和STS标记的序列信息,合成了27对特异性PCR引物。获得一些与抗晚疫病基因Rpi1相关联的新的DNA标记。对BC1群体中大量的个体植株进行的分析表明,在马铃薯第7条染色体上位于抗晚疫病基因Rpi1两侧的两个标记S1c9和GP127-300,它们与Rpi1基因的遗传距离分别为1.17cM和3.89cM。这些标记被用来筛选两个细菌人工染色体(BAC)文库,并分离出与晚疫病抗性相关的90-125kb的BAC克隆,这些克隆将在后续的工作中通过图位克隆的方法而用于分离晚疫病抗性基因。同时分离与甲虫抗性紧密相关的分子标记的工作正在进行中。  相似文献   

14.
利用重组近交系群体检测花生青枯病抗性SSR标记   总被引:7,自引:1,他引:7  
用抗青枯病花生品种远杂9102与感病品种Chico杂交,从F2起用单粒传法构建了花生重组近交系群体(RIL)F6和F7。采用354对SSR引物对重组近交系F6群体的基因组DNA鉴定,获得多态性标记45个。结合重组近交系群体F6和F7青枯病抗性鉴定结果,应用相关软件统计分析,构建了栽培种花生部分遗传连锁图。图谱总长度为603.9cM,含29个标记(28个SSR标记和1个表型标记)的8个连锁群,还有17个独立的SSR标记;获得了与青枯病抗性相关的SSR标记2个(7G02和PM137),位于该图谱的第1连锁群上,与青枯病抗性基因间的遗传距离为10.9cM和13.8cM,并且位于抗性基因的两侧,两标记间的距离为23.7cM。  相似文献   

15.
三个小麦赤霉病抗源的抗性QTL定位   总被引:7,自引:1,他引:7       下载免费PDF全文
为寻找小麦赤霉病抗性基因及可用于分子标记辅助育种的抗性连锁标记.对中国的三个小麦赤霉病抗源苏麦3号、望水白和宁894037进行了抗性QTL的定位研究。SSR、AFLP分析与QTL分析结果表明,尽管三个抗源的来源和遗传背景并不同,但均在3B染色体短臂上发现抗性主效QTL,不同遗传群体所获得的QTL位点所处的染色体区段略有差异,位于QTL两翼的SSR标记也有所不同。苏麦3号的赤霉病抗性主效QTL位于3B染色体上的标记区间Xgwm533~Xgwm493内;宁894037的抗性位点分布于3B和6B染色体上。分别定位于标记Xgwm493~Xbarcl33和Xgwm644-Xgwm518之间;望水白的抗性主效QTL也位于3B染色体上.定位于标记Xgwm493~Xbarc147之间。微效QTL由于遗传群体的不同,分别住于1B、3B和2A染色体上。研究还表明,寻找抗性QTL在3B染色体以外的新抗源十分必要。  相似文献   

16.
为了解小麦品种潍麦8号抗叶锈基因在染色体上的位置,利用EST标记对潍麦8号2AS染色体上的抗叶锈病QTL进行检测和分子作图。2011-2013年,对抗病品种潍麦8号×感病品种郑州5389杂交得到的179个F2:3家系及其亲本进行成株期抗叶锈病鉴定,得到表型数据。前期研究已利用SSR标记在潍麦8号2AS染色体上检测到一个主效QTL,为了寻找与该QTL距离更近的标记,本试验通过35个位于2AS染色体上的EST标记检测亲本及其F2:3家系,结果表明,4个EST标记与抗叶锈病QTL连锁,该QTL位点被定位在BE444541和CD452782之间,区间距离为11.3cM,3年解释的遗传变异分别为63.59%、62.48%和62.43%。  相似文献   

17.
分子标记辅助选择改良武育粳3号的条纹叶枯病抗性   总被引:3,自引:0,他引:3  
 在对抗水稻条纹叶枯病品种Dular进行抗性基因定位的基础上,以它为抗性供体亲本,武育粳3号为抗性受体亲本,通过杂交和回交,从BC1F1开始利用与条纹叶枯病抗性QTL qSTV 11b和 qSTV 11c 紧密连锁的4个分子标记进行辅助选择,改良武育粳3号的条纹叶枯病抗性和选育抗病新品种。对检测到抗病基因的回交后代进行主要性状的聚类分析,分别有9个抗病基因纯合的BC3F2单株和31个抗病基因杂合的BC4F1单株与武育粳3号聚为一类。经进一步纯合稳定,有望筛选到抗性得到改良、性状回复到武育粳3号的株系。对18个抗病基因纯合的BC2F3株系进行鉴定,其条纹叶枯病的抗性均达到抗的水平,有5个株系丰产性较武育粳3号有明显提高,其中2个株系外观品质也较武育粳3号有了明显改进,达到国家优质稻谷标准。  相似文献   

18.
大豆种子成熟至收获期间如遇高温高湿天气,种子活力及活性会急剧下降,这就是所谓的田间老化(field weathering).田间老化是热带、亚热带地区大豆生产的主要限制因素之一.本研究旨在寻找与田间老化性状相连锁的DNA标记并将其应用于辅助选择育种.为此,利用修改的培养箱老化法和人工控制老化法对大豆品种Chiangmai 60(敏感),GC10981(抵抗)及其F2群体(139个体)进行了鉴定.在两种处理条件下,F2代群体的种子发芽率及活性均为正态分布,说明大豆种子田间老化抗性受多个基因控制.根据F2代个体的种子发芽率及活性,6个高抗个体及7个高感个体的DNA分别被混合为抗性池和感性池,并利用AFLP标记进行了混合群体分析(Bulk Segregant Analysis).从扩增的2162个标记中,发现了5个可能于大豆种子田间抗性相连锁的片段.通过DNA克隆和测序,设计了5对引物用于从大豆总DNA中扩增相应的片段.其中3对引物扩增的片段差异太小或未能扩增正确大小的片段,没能用于F2群体.引物Eaag/Mcac-233和Eact/Mctt-157能扩增出差异明显的多态性,通过对F2代群体的分析,这2个标记属同一连锁群,遗传距离为25.8cM.QTL分析结果显示有一个QTL位于这两个标记之间,距Eaag/Meac-233约14cM,可以解释29.7%的变异.用这两对引物对整个F2群体进行筛选,20个个体属于抗性群体,结合抗性鉴定的结果,7个个体被用于与Chiangmai 60进行回交.18个BC1F1个体(41.9%)的抗性高于其亲本的平均值.说明这些标记进行可以被用于大豆田间老化抗性的辅助筛选研究.  相似文献   

19.
利用BSA法发掘玉米抗灰斑病主效QTL   总被引:1,自引:0,他引:1  
以玉米高抗灰斑病自交系齐319与高感病自交系Ye478构建的RILS(重组自交系)为试材,通过两年田间表型鉴定,选取极端表型家系高抗16个,高感15个,利用SSR分子标记,并结合群体分离分析方法(BSA)筛选玉米抗灰斑病连锁标记并进行基因定位。结果表明,在玉米第1连锁群上检测到1个主效抗病基因位点(QTL),与两侧的分子标记umc2614和bnlg1803遗传图距分别为4.74 c M和3.78 c M,该抗病基因位点可解释40.9%的表型变异率,抗病基因来源于齐319,加性效应达到了-7.817 5。  相似文献   

20.
Inheritance and QTL Mapping of Salt Tolerance in Rice   总被引:6,自引:0,他引:6  
An F2 population derived from the cross between Jiucaiqing (japonica) and IR36 (indica) was used to analyze the inheritance of salt tolerance in rice by genetic model of major-genes plus polygenes, and to map the corresponding QTLs by SSR molecular markers. Rice plants of P1, P2, F1 and F2 at 5- to 6- leaf stage were treated under 140 mmol/L NaCI for 10 days. Three indices representing the ability of salt tolerance of rice seedlings were measured, including salt tolerance rating (STR), Na^ /K^ ratio in roots and dry matter weight of shoots (DWS). STR, Na^ /K^ and DWS were all controlled by two major genes with modification by polygenes. Heritability of these traits from major genes was 17.8, 53.3 and 52.3%, respectively. The linkage map constructed by 62 SSR molecular markers covered a total length of about 1 142 cM. There were three QTLs detected for STR located on chromosome 1, 5 and 9, two QTLs for DWS on chromosomes 8 and 9, and two QTLs for Na^ /K^ on chromosomes 2 and 6, one on each chromosome respectively. Single QTL accounted for 6.7 to 19.3% of phenotypic variation. Identification method of salt tolerance in rice and breeding of rice varieties with salt tolerance based on molecular markers assisted selection had been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号