首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
生长调控因子(growth-regulating factors,GRF)是植物特有的一类转录因子,该转录因子家族成员数目较多,在植物生长发育过程中发挥着重要作用。以巴西橡胶树优良品种‘热研7-33-97’为材料,通过RT-PCR方法进行HbGRF基因的克隆;利用生物信息学的方法对其蛋白序列、理化性质、基因结构、进化关系进行分析;利用IS-PCR技术和FISH技术对其进行物理定位分析;采用qRT-PCR对橡胶树中HbGRF基因的表达模式进行研究。结果表明:在橡胶树雌花中克隆到3个GRF基因,分别命名为HbGRF1HbGRF2HbGRF3,分子量分别为65.663、41.188、52.858 kDa,其编码的蛋白长度分别为609、384、494 aa,均为不稳定蛋白;3个基因均具有GRF完整的特征结构域WRC和QLQ,分别属于3个不同亚族。基因物理定位结果表明,HbGRF1HbGRF2HbGRF3基因分别位于橡胶树染色体的第11号长臂、第5号短臂和第9号长臂上,基因到着丝粒的平均百分距离是77.65、42.66和65.27。表达结果显示,橡胶树3个HbGRF基因在茎尖、雌花等生长旺盛的组织中表达量较高,用外源赤霉素和脱落酸处理后,发现表达量呈上升趋势,经过48 h后表达量和初始值基本持平,3个基因在茎尖、雌花中有明显的表达特异性,可能在橡胶树花芽分化及雌花的发育过程中起到了重要作用。该结果为研究橡胶树HbGRF基因的功能及作用机制奠定了理论基础,为橡胶树精准育种提供了分子细胞学依据。  相似文献   

2.
为研究巴西橡胶树钾转蛋白(KT/HAK/KUP)基因家族在生长发育和逆境胁迫方面的生物学功能,从橡胶树基因组中鉴定得到31个KT/HAK/KUP基因家族成员,并从基因结构、染色体定位、系统进化和表达分析等方面进行全面系统的分析.研究结果发现,KT/HAK/KUP基因家族31个成员分布在3个Contig和15个染色体上,...  相似文献   

3.
牻牛儿基牻牛儿基焦磷酸合成酶(GGPS)和膜结合焦磷酸酶(V-PPase)是橡胶生物合成的重要调控酶.本研究通过双色荧光原位杂交技术对巴西橡胶树GGPS和V-PPase基因进行染色体定位,结果表明:GGPS基因位于巴西橡胶树‘热研7-33-97’4号染色体的短臂上,基因位点距离着丝粒的百分距离为72.39.而V-PPase基因位于巴西橡胶树‘热研7-33-97’10号染色体的短臂上,基因位点到着丝粒的百分距离为25.78.为橡胶树遗传育种及基因工程等提供分子细胞遗传学依据.  相似文献   

4.
YABBY基因家族是一类植物特有的转录因子,在植物叶片和花器官的发育以及非生物胁迫应答中起重要的调控作用。本研究从橡胶树基因组中鉴定得到11个HbYABBY家族成员,并从基因结构、启动子顺式作用元件、染色体定位、系统进化及基因表达等方面进行分析。结果显示11个橡胶树HbYABBY基因分布在9条染色体上,编码蛋白的长度在132~241个氨基酸,分子量在14.75~26.41 kDa,启动子区域含有丰富的光响应元件。该基因家族具有显著的组织表达特异性,叶片和花中高表达,而在胶乳和根中基本不表达。叶片的发育过程中,除HbCRC1上调表达,另外9个HbYABBY基因均显著持续下调表达,表明HbYABBY深度参与橡胶树叶片发育调控。转录组测序和荧光定量检测均发现所有HbYABBY成员受高温诱导持续下调表达,但不受低温胁迫诱导,暗示了HbYABBY在橡胶树的高温胁迫中发挥调控作用。本研究以热带经济林木巴西橡胶树为研究对象,对YABBY转录因子基因家族的理化特征、表达及功能进行了初步分析,为该基因家族功能的深度研究提供了理论依据和参考。  相似文献   

5.
胶乳转化酶(Invertase,Inv)是控制橡胶树胶乳蔗糖代谢和影响胶乳(橡胶)产量的关键酶。已有研究证实了胶乳转化酶属于中性/碱性转化酶。本研究以热研7-33-97(2n=36)为材料制备叶片细胞染色体标本,采用荧光原位杂交技术(fluorescence in situ hybridization,FISH)对胶乳转化酶基因HbNIN1、HbNIN2和HbNIN3进行了染色体物理定位的初步研究。结合核型分析,初步确定HbNIN1基因位于5号染色体的长臂上,其信号位点到着丝粒的百分距离为33.1;HbNIN2基因位于2号染色体的长臂上,其信号位点到着丝粒的百分距离为35.7;HbNIN3基因位于3号染色体的短臂上,其信号位点到着丝粒的百分距离为40.42。由此揭示了该基因家族在染色体上的位置和分布特点。  相似文献   

6.
7.
生长素反应因子(Auxin Response Factors, ARFs)是植物特有的多基因转录因子家族,参与植物生长发育过程的调节。本研究基于转录组数据,通过生物信息学方法鉴定剑麻ARF基因家族成员,同时对其进行相关生物信息学分析。结果表明:在剑麻中共鉴定得到15个ARF基因,并依次命名为AhARF 1~15。其编码的蛋白质含有409~1011个氨基酸,分子量约为45.17~112.13 ku,等电点为5.17~9.34。亚细胞定位预测结果显示,13个AhARFs定位于细胞核,2个AhARFs定位于叶绿体。保守结构域分析结果表明,AhARFs基因家族有8个成员同时含有B3、ARF和Aux/IAA这3个相对保守的结构域,其他成员仅含有B3和ARF这2个结构域。进化树分析表明,剑麻AhARFs蛋白可分为5个亚家族。15个剑麻AhARFs基因在剑麻紫色卷叶病不同发病时期呈现不同的表达规律。本研究为进一步深入探索剑麻ARF基因家族的功能奠定了重要理论基础。  相似文献   

8.
在植物中,酰基-ACP硫酯酶(fatty acyl-ACP thioesterase, FAT)是调控脂肪酸合成的关键酶。为解析可可FAT基因家族成员的特点与功能,本研究从可可基因组中筛选鉴定出FAT基因家族的6个成员,分别命名为TcFATATcFATB1TcFATB2TcFATB3TcFATB4TcFATB5。6个基因外显子数目为6~7个,编码区(CDS)长度介于1128~1263 bp,预测蛋白分子量介于42.72~46.47 kDa,等电点介于6.57~9.10。进化分析结果表明可可FAT基因家族分成FATA与FATB亚群,FATA亚群包含1个可可TcFATA成员,FATB亚群包含5个可可TcFATBs成员。不同可可种子发育时期表达分析结果表明:TcFATATcFATB1伴随果实发育成熟,表达量呈下降趋势,TcFATATcFATB1在不同种质中表达量与油酸(C18:1)和棕榈酸(C16:0)比例呈正相关,表明其与脂肪酸组分比例调控有紧密关联。  相似文献   

9.
AGL6基因是MADS-box转录因子家族中的一员,是植物特有的转录调控因子,参与花器官形成,对唇瓣的形成起到关键作用。获得铁皮石斛DoAGL6基因及其启动子,并进行生物信息学分析,对DoAGL6基因启动子进行瞬时表达活性验证,可为进一步研究DoAGL6基因的功能提供参考。本研究克隆DoAGL6基因及其上游的启动子序列,利用在线软件对克隆得到的目的基因序列、启动子序列进行预测,分别构建由全长启动子和5'端缺失启动子驱动GUS的重组表达载体并瞬时转化拟南芥及铁皮石斛原球茎,探究其表达活性。结果表明,成功克隆了DoAGL6基因及其启动子,DoAGL6基因编码区长729 bp,编码243个氨基酸,编码蛋白分子式为C1213H1955N359O375S12,预测亚细胞定位于细胞核中;保守结构域分析表明,DoAGL6具有保守的MADS-box和K-box两个结构域,属于MADS基因家族MIKC亚家族。启动子序列长度为1891 bp,顺式作用元件分析结果显示,DoAGL6基因启动子中除了核心启动元件TATA-box、CAAT-box外,还有许多其他顺式作用元件,如脱落酸响应元件(ABRE)、光反应顺式调节元件(G-Box)、茉莉酸甲酯响应元件(TGACG-motif)、MADS-box蛋白结合位点(GArG-Box)等。成功构建融合表达载体pCAMBIA1300-A1-promoter::GUS、pCAMBIA1300-A2-promoter::GUS、pCAMBIA1300-A3-promoter::GUS,拟南芥和铁皮石斛原球茎瞬时转化及GUS组织化学染色结果表明,随着启动子5'端缺失片段的增长,GUS活性逐渐降低,启动子活性逐渐减弱,即全长启动子A1(-1891~1)的活性最强,5'端缺失片段A2(-1488~1)次之,A3(-784~1)活性最弱。瞬时转化后的拟南芥和铁皮石斛原球茎GUS染色均呈现蓝色,但与对照相比均较浅,说明全长启动子和2个5'端缺失启动子都具有驱动GUS的活性,但启动活性都比CaMV35S启动子的启动活性弱。  相似文献   

10.
蔗糖分解酶在马铃薯和胡萝卜等块根/块茎的生长发育中发挥着重要作用,但在甘薯块根发育中的作用机制尚不清楚。本研究以2个在块根数量和鲜重上存在显著差异的甘薯品种‘高系14'及其突变体为材料,对其不同发育时期(30、60、90、120 d)块根中的可溶性糖(蔗糖、葡萄糖和果糖)、淀粉含量、蔗糖分解酶活性以及相关基因家族成员的表达水平进行测定,以明确调控块根数量和大小的关键蔗糖分解酶及主要基因家族成员。结果表明:(1)阐明了4种蔗糖分解酶活性在薯块根发育过程中的变化规律,细胞质转化酶(CIN)和液泡转化酶(VIN)活性的整体变化趋势呈现‘u'形曲线,即块根发育早期、晚期活性相对较高,发育中期最低;细胞壁转化酶(CWIN)和蔗糖合成酶(Sus)活性整体变化趋势呈‘n'形曲线,与前者正好相反,即在块根发育早期、晚期较低,发育中期最高。(2)和突变体相比,具有较高块根数量和鲜重的‘高系14'在块根发育早期(30 d)具有较高的Sus和CIN活性,而高Sus和CIN活性可以促进蔗糖由叶片向块根转运,从而提高块根中的淀粉、蔗糖和葡萄糖含量,最终为块根的生长发育提供能量和碳骨架以增加块根数量和鲜重。(3)从甘薯基因组中共鉴定出9个Sus基因家族成员和12个CIN基因家族成员,其中有1个Sus基因(IbSus6)和5个CIN基因(IbCIN4IbCIN6IbCIN8IbCIN10和IbCIN11)的表达水平在30 d时表现为‘高系14'显著高于突变体,同时IbSus6IbCIN4IbCIN8IbCIN10IbCIN11分别为30 d块根中表达的主要Sus和CIN基因家族成员,因此上述1个Sus基因家族成员和4个CIN基因家族成员可能是调控甘薯块根发育的主要蔗糖分解酶基因。总之,Sus和CIN在甘薯块根早期发育中发挥着重要作用,其关键基因家族成员的阐明可为优异甘薯新品种的选育提供理论依据。  相似文献   

11.
小热激蛋白(small heat shock protein, sHSP)是一类胁迫诱导蛋白,不仅参与植物发育还响应生物与非生物胁迫。本研究通过分析转录组数据获得橡胶树12个sHSP基因家族成员。生物信息学分析和表达谱分析结果表明:蛋白保守结构预测显示12个sHSP均具有α-晶体蛋白保守结构域;二级结构预测结果显示,12个sHSP均由α-螺旋、β-转角、延伸链和大量的随机卷曲组成。通过RT-PCR技术分析,结果发现这12个sHSP家族基因在橡胶树不同组织和叶片不同发育时期中表达有明显差异,HbsHSP15.8HbsHSP16.2HbsHSP17.3HbsHSP17.4HbsHSP17.5bHbsHSP18.2HbsHSP18.3HbsHSP22.5HbsHSP22.6HbsHSP23.9在胶乳中高表达,HbsHSP17.4在树皮中高表达,HbsHSP17.5a在树茎中高表达,HbsHSP25.8则在树叶中表达量最高。乙烯利处理后,12个sHSP家族基因的表达总体呈下降趋势。在不同死皮等级橡胶树中12个sHSP家族基因的表达也具有明显差异,与健康树相比,HbsHSP15.8HbsHSP17.4HbsHSP17.5aHbsHSP17.5bHbsHSP18.2HbsHSP18.3HbsHSP22.6HbsHSP23.9HbsHSP25.8在死皮树中的表达量呈下降趋势;HbsHSP16.2HbsHSP17.3HbsHSP22.5的表达量呈上升趋势。因此推测橡胶树sHSP家族基因可能参与橡胶树生物与非生物逆境胁迫响应,以及可能在乙烯作用途径中发挥作用。  相似文献   

12.
邓治  李德军 《热带作物学报》2021,42(9):2443-2450
肌动蛋白细胞骨架可能在橡胶树乳管伤口堵塞过程中发挥重要作用。前纤维蛋白(profilin)是肌动蛋白动态平衡的重要调节子,但对橡胶树profilin基因家族系统研究的报道较少。通过分析橡胶树基因组和转录组数据,鉴定到6个橡胶树profilin基因,对其基本特性及蛋白保守基序、结构特征、进化关系和表达模式等进行分析。基因结构分析表明,橡胶树profilin基因都包含3个外显子2个内含子,编码的蛋白序列含有profilin蛋白特有的保守基序KYMVIQGE和VIRGKKG。进化分析显示,橡胶树profilin并未严格分为营养型和生殖型2种类型。profilin蛋白二级结构以无规则卷曲为主,三级结构均包含3个α螺旋和7个β折叠。表达分析结果显示,4个profilin基因在胶乳中高表达,橡胶树排胶和碘化钾处理调控这4个profilin基因表达,推测profilin基因参与橡胶树排胶过程。该研究结果为进一步阐明橡胶树profilin基因在乳管伤口堵塞和排胶中的作用奠定基础。  相似文献   

13.
郭靖  袁红梅 《热带作物学报》2022,43(10):1965-1971
橡胶树是天然橡胶的唯一材料来源。寒害是橡胶树面临的主要自然灾害之一,严重限制了橡胶树的生长发育和种植区域分布,克隆和鉴定橡胶树低温应答基因尤为重要。蛋白激酶BIN2(brassinosteroid insensitive 2)是一种丝氨酸/苏氨酸蛋白激酶,在调控植物应对低温胁迫中发挥重要作用,但橡胶树蛋白激酶HbBIN2还未被克隆与鉴定。本研究从橡胶树cDNA中成功克隆出HbBIN2,序列分析表明:HbBIN2的开放阅读框为1143 bp,编码380个氨基酸,蛋白的分子量为42.9 kDa,理论等电点为8.74,是亲水性蛋白且无跨膜结构域。将HbBIN2构建到原核表达载体pET28a上,转化大肠杆菌BL21(DE3)表达菌株,摸索合适的诱导条件后成功诱导表达出HbBIN2蛋白。比较HbBIN2在不同的诱导温度(16、28、37℃)、诱导时间(3、6、12 h)和IPTG浓度(0.1、0.3、0.5 mmol/L)下的表达量,结果表明,HbBIN2在37℃,0.3 mmol/L IPTG诱导12 h的表达量最大。对HbBIN2蛋白体外纯化条件进行探索,结果表明,100 mmol/L咪唑能将目的蛋白完全洗脱。纯化HbBIN2蛋白并进行激酶活性鉴定,结果表明,该蛋白具有激酶活性。该研究为后续HbBIN2蛋白功能分析和橡胶树应对低温胁迫的调控机制研究提供参考,为橡胶树耐寒品种分子育种提供重要的基因资源。  相似文献   

14.
SVP(short vegetative phase)是一类开花抑制基因,通过调节开花相关基因的表达,影响植物从营养生长阶段向生殖生长阶段的转变进程。根据公布的菠萝基因组信息,从‘台农4号’菠萝中克隆到2个AcSVP基因AcSVP1AcSVP2。结果表明:AcSVP1AcSVP2分别编码225和230个氨基酸,均含有MADS-box、K-box保守结构域,二者所编码蛋白均属MADS-box基因家族成员。定量PCR分析结果显示,2个AcSVP基因在菠萝茎尖、茎基和叶中均有不同程度的表达,乙烯利处理后主要表现为下调。乙烯利处理8 h内,AcSVP1在茎尖、叶中的表达显著下调,但在茎基组织中呈现先下调后上升的趋势;乙烯利处理后8 h,茎基组织中AcSVP1的相对表达量略高于对照。与AcSVP1不同,乙烯利处理8 h内AcSVP2在茎尖、茎基、叶3种组织中均明显下调;乙烯利处理后8 h,AcSVP2在茎尖、茎基、叶组织中的相对表达量只有对照的8%、44%和33%。SVP是目前已知的最重要的一类开花抑制基因,AcSVP在响应乙烯利的过程中表达显著下调,表明其在乙烯利诱导菠萝成花过程中可能发挥重要作用。  相似文献   

15.
转录因子家族是由含有锌指结构的DOF结构域组成,构成植物特有的转录因子家族之一,在植物的生长发育进程中诸如信号转导、形态建成、抵御环境胁迫等方面都发挥着重要的作用。本研究利用定量PCR技术,探测了8个ZmDOFs基因在玉米6个不同组织的表达模式,结果表明,8个ZmDOFs基因具有不同的组织特异性表达模式,4个主要在幼穗中表达,2个主要在雄花中表达,ZmDOF28主要在苞叶中表达,而ZmDOF38在多种组织中表达,表明在玉米进化的进程中8个ZmDOFs基因表达模式的保守性和特异性。盐胁迫和干旱胁迫时,分别有7个和6个ZmDOFs基因受到明显的诱导,表明ZmDOFs基因广泛参与玉米应答盐胁迫或干旱胁迫响应途径。在铵态氮胁迫和硝态氮胁迫时,分别有7个和8个ZmDOFs基因的表达受到了明显的改变,表明ZmDOFs基因参与玉米应答氮胁迫响应途径,体现了在其历史进化进程中的表达模式和功能的保守性与独特性。本研究为后续研究ZmDOFs基因的功能提供了参考。  相似文献   

16.
薏苡是传统药食兼用经济作物,具有极高的营养价值和重要的药用价值,越来越受人们重视。转录因子是一类能够与调控基因的顺式作用元件或者功能基因特异性结合的重要调控蛋白质分子,在植物的许多生物学活动过程中起着重要的调控作用。碱性亮氨酸拉链(bZIP)转录因子家族在调控植物的生长发育及响应生物与非生物胁迫中起着重要作用。本研究利用北京薏苡(2n=20)基因组信息鉴定出83个bZIP基因家族成员,命名为ClbZIP1~ClbZIP83,2个bZIP基因(Cl042706Cl042496)不能最终定位到任何连锁群通过生物信息学方法,分析了基因结构、理化性质、染色体分布,研究了其与其他物种的系统进化关系,并利用转录组技术研究了家族成员在栽培种兴仁小白壳苗期响应非生物胁迫的基因表达规律。结果表明:薏苡全基因组中bZIP成员分别编码氨基酸97~1008个,最小的是ClbZIP5(97个氨基酸),而最大的是ClbZIP28(1008个氨基酸);蛋白质分子量在11.33~110.03 kDa之间,pI在4.15(ClbZIP44)到12.33(ClbZIP50)之间;将其划分为A~I、K、S等11个亚组,不均匀地分布于基因组的10条染色体上;除了广泛分布的bZIP结构域的motif 1或motif 2外,每一类都具有相似基因结构与基序;然而,不同成员间存在外显子数目差异,最多为15个外显子(ClbZIP15),最少为0个;干旱、高温、干旱和高温胁迫条件下,83个ClbZIP家族基因在干旱和高温胁迫后表达量的发生明显的变化,这说明这些基因可能在干旱和高温中的调控作用存在着不同。上述结果为更深入研究薏苡bZIP家族基因的生物学功能奠定基础及其在调控薏苡生长发育与响应生物与非生物胁迫机制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号