首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
为了探明灌溉对淀粉积累及其相关酶活性的影响规律,在大田条件下,以弱筋小麦豫麦50为材料,研究了三种灌溉方式(W1:拔节期灌水一次;W2:拔节期和孕穗期各灌水一次;W3:拔节期、孕穗期和灌浆期各灌水一次.每次灌水定额750 m3/ha)下弱筋小麦淀粉及其相关酶活性的变化规律.结果表明,弱筋小麦灌浆中后期和成熟期籽粒直链淀粉、支链淀粉、总淀粉积累速率均表现为W3>W2>W1.成孰期籽粒淀粉支/直比例表现为W3>W2>W1.成熟期籽粒淀粉支/直比例表现为W3<W2<W1.孕穗期和灌浆期增加灌水提高了灌浆中后期旗叶和籽粒中蔗糖含量、蔗糖合成酶(SS)活性、蔗糖磷酸合成酶(SPS)活性,提高了灌泺中后期籽粒中可溶性淀粉合成酶(SSS)活性和束缚态淀粉合成酶(GBSS)活性.说明增加灌水使弱筋小麦旗叶蔗糖合成能力强,促进源器官蔗糖向库中运输,保证籽粒库中糖源的充分供应,有利于籽粒淀粉的合成和积累.  相似文献   

2.
为明确水地强筋冬小麦高产、优质、高效的灌溉技术,试验设3个灌水时期8个灌溉处理[越冬期灌1水(W1),拔节期灌1水(W2),孕穗期灌1水(W3),越冬期和拔节期灌2水(W12),越冬期和孕穗期灌2水(W13),拔节期和孕穗期灌2水(W23),越冬期、拔节期和孕穗期灌3水(W123),全生育期不灌水处理(CK)],于小麦成熟期测定籽粒产量、总蛋白及其组分含量和淀粉含量。结果表明,与不灌水的CK比较,所有灌水处理的籽粒产量、有效穗数、穗粒数、千粒重、蛋白质产量以及籽粒淀粉含量均显著增加,但籽粒的总蛋白及其组分含量均呈不同程度降低(W1处理除外)。越冬期灌水对有效穗数、籽粒产量、总蛋白及其组分含量、淀粉含量的提升作用较大;拔节期灌水对穗粒数的提升作用较大,但对淀粉含量的提升作用较小,对总蛋白及其组分含量的降低作用较大;孕穗期灌水对千粒重的提升作用较大,对蛋白质产量的提升作用较小。随着灌水次数增加,小麦籽粒产量显著提高,淀粉含量先显著提高后基本不变,而籽粒总蛋白及其组分含量降低。W123处理籽粒产量最高,其次是W13处理;W1处理籽粒蛋白质及其组分含量最高,其次是W12及W13处理;W23处理淀粉含量最高,其次是W12或W13处理。综合各项指标,最好的灌水组合是越冬期和孕穗期灌2水(W13)。  相似文献   

3.
灌水对不同小麦品种耗水特性和土壤硝态氮运移的影响   总被引:2,自引:0,他引:2  
为了解灌水对不同小麦品种耗水特性和土壤硝态氮运移的影响,在大田条件下,以济麦20和泰山22为材料,设置4种水分处理[W0处理(全生育期不灌水)、W1处理(灌底墒水+拔节水)、W2处理(灌底墒水+拔节水+开花水)、W3(灌底墒水+拔节水+开花水+灌浆水)],每次灌水量60mm,分析了不同灌水处理下小麦0~200cm土层土壤含水量、土壤水消耗量、土壤硝态氮运移及籽粒产量的差异。结果表明,(1)依据土壤含水量受灌水影响的程度和变异系数,将0~200cm土壤分为3个层次:活跃层(0~60cm)、次活跃层(60~140cm)和相对稳定层(140~200cm)。(2)两品种W1处理的冬前、开花和成熟期0~60cm土层土壤硝态氮含量低于W0处理;冬前期60~140cm土层高于W0处理,140~200cm土层与W0处理无显著差异;开花期60~140cm和140~200cm土层高于W0处理;成熟期0~60cm土层高于W2、W3处理,60~140cm和140~200cm土层低于W3处理。拔节期济麦20W1处理60~140cm和140~200cm土层土壤硝态氮含量高于W0处理,泰山22的低于W0处理。(3)济麦20各处理0~200cm土层土壤水消耗量均高于泰山22。济麦20W1处理0~60cm和60~140cm土层土壤水消耗量高于W2处理,籽粒产量、水分利用效率高于W2、W3处理;泰山22W2处理0~60cm土层的土壤水消耗量与W1处理无显著差异,60~140cm和140~200cm土层的土壤水消耗量低于W1处理,水分利用效率与W1处理无显著差异,但高于W3处理,籽粒产量高于W1、W3处理。济麦20和泰山22分别以底墒水、拔节水各灌60mm和底墒水、拔节水、开花水各灌60mm为节水、高产、氮素淋溶量低的最佳灌水模式。  相似文献   

4.
为明确不同的群体结构下冬小麦的合理补灌水时间和数量,于2018-2019年冬小麦生长季,通过裂裂区试验,以品种为主区,选用大穗型品种山农23和中多穗型品种山农29;以播种方案(播期+种植密度)为副区,设10月5日播种+基本苗120×10~4株·hm~(-2)(适期精播,A1)和10月12日播种+基本苗240×10~4株·hm~(-2)(晚播增密,A2)两个水平;以补灌方案为副副区,设拔节期和开花期补灌使0~20 cm土层土壤相对含水率达100%田间持水率(W1)和拔节期补灌使0~40 cm土层土壤相对含水率达100%田间持水率(W2)两个水平,分析了拔节期和开花期补灌对不同播期和种植密度下冬小麦水分利用和籽粒产量的影响。结果表明,在A1条件下,与W2处理相比,W1处理显著降低了小麦对土壤贮水的消耗,增加了对补灌水的利用,提高了自群体总茎蘖数量达到最大值至开花期的分蘖消亡速率,增加了成熟期群体干物质积累量,显著提高穗粒数、千粒重、水分利用效率和灌水生产效率;在A2条件下,与W2处理相比,W1处理提高了拔节至开花期间的分蘖消亡速率、成熟期群体干物质积累量、穗粒数、籽粒产量和灌水生产效率,显著增加小麦对土壤贮水的消耗量和农田耗水量。上述结果说明,拔节期和开花期补灌使麦田0~20 cm土层土壤相对含水率达100%田间持水率,提高了两种播种方案下大穗型和中多穗型小麦品种的穗粒数、千粒重和灌水生产效率,尤其提高了适期精播小麦的水分利用效率和晚播增密小麦的籽粒产量,是调控不同群体结构下冬小麦实现高产和高水分利用效率的最优补灌方案。  相似文献   

5.
不同灌水模式对冬小麦产量及水分利用的调控效应   总被引:3,自引:0,他引:3  
为明确不同灌水次数和灌水时期对小麦产量和水分利用效率的影响,在池栽条件下,以小麦品种矮抗58为材料,设置全生育期不灌水(W0)、灌拔节水(W1)、灌拔节水+孕穗水(2水,W2)和灌拔节水+孕穗水+灌浆水(3水,W3)4个处理,通过定位试验探讨不同灌水方式对小麦产量及水分利用效率(WUE)的调控效应。结果显示,与W0处理相比,3个生长季W1、W2和W3处理的平均产量分别提高37.2%、52.9%和52.7%,而平均耗水量分别增加27.1、70.4和94.9mm;灌水的增产效果在不同年份间存在差异,干旱年份的增产幅度显著大于正常年份。小麦总耗水量和WUE、产量均呈二次曲线关系,其中WUE以W1为最大,而产量以W2最大。综合考虑小麦产量和水分利用效率,正常降水年份在拔节期灌1次水、干旱年份灌拔节水+孕穗水(2水)为小麦节水高产灌溉模式。  相似文献   

6.
不同水氮处理对小麦耗水特性及产量的影响   总被引:3,自引:0,他引:3  
为给小麦高产节水栽培提供理论依据,以百农矮抗58为材料,在大田条件下设置3个灌水水平[不灌水(W0),灌1水(W1,拔节水),灌2水(W2,拔节和开花水)]和5个施氮水平[0kg·hm-2(N0)、90kg·hm-2(N1)、180kg·hm-2(N2)、240kg·hm-2(N3)、300kg·hm-2(N4)],研究水氮处理对冬小麦耗水特性及产量的影响。结果表明,随着施氮量的增加,小麦总耗水量和土壤贮水消耗量先增加后降低,以N3处理最高,各种水分利用效率也表现出相似趋势。随灌水次数的增加,总耗水量、土壤水利用效率和降水利用效率均提高,而水分利用效率和灌水利用效率则相反。阶段耗水量均随灌水次数增加而提高,施氮对阶段耗水量的影响因灌水不同而异,其中,N2和N3处理在拔节至开花期的耗水量较高,而在开花至成熟期则较低。籽粒产量随施氮量增加呈先升后降趋势,随灌水次数增加则持续提高。综合考虑产量和生产成本,W1N3处理为本试验条件下节水高产的水氮运筹推荐模式。  相似文献   

7.
为明确灌水模式及追氮量对北京小麦生长发育和产量的影响,通过裂区试验,分别以灌水和追氮量为主副区。其中,灌水在各处理均灌溉越冬水600 m·hm-2和灌浆水450 m·hm-2基础上,设置4种春季灌水模式即返青水300 m·hm-2+拔节水450 m·hm-2(W1)、返青水750 m·hm-2 (W2)、起身水750 m·hm-2(W3)、拔节水750 m·hm-2(W4);追氮量设75、120、165、210和255 kg·hm-2 5个水平(分别用N1、N2、N3、N4、N5表示)。通过田间调查和室内考种分析了不同水氮条件下小麦群体和个体性状及产量的差异。结果表明,不同水氮处理相比,起身期灌水追氮促进了小麦植株基部第一节间的伸长,进而导致株高增加,加大了倒伏风险;返青期+拔节期灌水追氮有利于小麦穗发育,获得较少不孕小穗数和较高穗粒数。在所有处理中,返青+拔节两次灌水追氮处理的产量较高,其中W1N2处理的产量最高(7 728.0  kg·hm-2)。因此,在北京地区小麦种植中可采用春季返青期+拔节期两次灌水追氮的水氮管理模式。  相似文献   

8.
为给强筋小麦高产优质栽培的水氮合理运筹提供理论依据,以强筋小麦济麦20为试验材料,在大田条件下设置了3个施氮水平:0 kg·hm-2(N0)、180 kg·hm-2(N1)、240 kg·hm-2(N2);每个施氮水平下设置4个灌水处理:不灌水(W0)、底水+拔节水+开花水(W1)、底水+冬水+拔节水+开花水(W2)、底水+冬水+拔节水+开花水+灌浆水(W3),每次灌水量60 mm,研究了水氮互作对强筋小麦济麦20籽粒蛋白质品质及其相关酶活性、产量及氮素和水分利用效率的影响。结果表明,旗叶硝酸还原酶、谷氨酰胺合成酶、内肽酶、羧肽酶和氨肽酶活性均为N2处理最高,N0处理最低。各施氮水平下硝酸还原酶活性和谷氨酰胺合成酶活性均以W0处理最低,W3处理与W1和W2处理相比,灌浆后期硝酸还原酶活性和谷氨酰胺合成酶活性提高,但各蛋白质水解酶活性降低。不施氮条件下,W3处理促进了籽粒蛋白质积累;施氮条件下,W1、W2和W3处理的籽粒蛋白质含量无显著差异。每公顷施纯氮180 kg条件下,W1处理的沉淀值高于其他灌水处理,湿面筋含量、面团稳定时间、籽粒产量、氮肥表观利用率和氮肥农学效率与W2处理无显著差异,高于W0和W3处理,水分利用效率高于W2和W3处理。综合考虑籽粒品质、产量、氮素和水分利用效率,施氮量为180 kg·hm-2、全生育期灌底水+拔节水+开花水的N1W1处理为高产优质高效的最佳组合。  相似文献   

9.
为了解越冬期测墒补灌对冬小麦光合特性和水分利用效率的影响,于2013-2014年小麦生长季,选用高产冬小麦品种济麦22为材料,在大田条件下,依据0~40 cm土层进行测墒补灌。设置5个试验处理,即全生育期不灌水(W0)、越冬期不灌水(W1)、越冬期补灌至土壤相对含水量70%(W2),越冬期补灌至土壤相对含水量75%(W3)及越冬期+拔节期+开花期各灌溉60 mm(W4),其中W1、W2和W3处理在越冬期补灌基础上于拔节期和开花期分别补灌至土壤相对含水量的65%和70%,对不同水分条件下冬小麦叶片净光合速率、蒸腾速率、气孔导度、干物质积累、籽粒产量和水分利用效率进行了分析。结果表明,小麦各生育期总灌水量为W4>W3>W2>W1>W0。在灌浆中期,小麦旗叶净光合速率、蒸腾速率和气孔导度均表现为W4>W2、W3>W1>W0,拔节期、开花期和成熟期干物质积累量表现为W4>W2>W3>W1>W0;W2处理开花后干物质积累量和对籽粒的贡献率与W4处理无显著差异,均显著高于W0、W1和W3处理;各处理籽粒产量表现为W4>W2、W3>W1>W0;水分利用效率表现为W2>W1、W3>W4>W0。依据0~40 cm土层进行测墒补灌,小麦越冬期土壤目标相对含水量达70%的W2处理的补灌水量低于W3和W4处理,籽粒产量和水分利用效率较优,分别为8 864. 46 kg·hm-2和22.14 kg·hm-2·mm-1,是高产节水的最佳灌溉处理。  相似文献   

10.
为了解小麦灌浆期旗叶生理特性和产量对灌水量的响应,以小麦品种衡6632、石农086和济麦22为供试材料,通过旱棚和大田试验,设置春季不灌水(W0)、灌拔节水(W1,75 mm)和灌拔节+开花水(W2,150 mm)3个处理,比较分析了不同灌水量下三个品种灌浆期旗叶抗氧化和渗透调节能力及产量的差异。结果表明,旱棚条件下,与W0处理相比,W1和W2处理显著提高了各品种旗叶超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,显著降低了丙二醛、脯氨酸和可溶性糖含量,显著增加穗粒数及产量,其中石农086和济麦22的W2处理产量均显著高于W1处理。大田条件下,与W0处理相比,W1和W2处理均显著提高了三个品种旗叶SOD、POD和CAT活性,降低脯氨酸和可溶性糖含量,显著增加有效穗数和产量,各品种产量在W2 与W1处理间无显著差异。这说明春季灌水能不同程度增强小麦抗氧化能力,提高籽粒产量。  相似文献   

11.
灌水模式对春小麦光合性能和干物质生产的影响   总被引:1,自引:0,他引:1  
为探寻宁夏引黄灌区春小麦节水栽培的适宜灌水模式,比较分析了6个不同灌水处理(W1:二棱水+开花水;W2:二棱水;W3:拔节水;W4:二棱水+孕穗水;W5:二棱水+拔节水+孕穗水+开花水+灌浆水;W6:二棱水+拔节水+孕穗水+开花水)下春小麦光合性能、物质积累与转运、产量性状及水分利用的差异。结果表明,灌二棱水、孕穗水或开花水的W1、W4、W5、W6处理明显增加春小麦花后旗叶光合速率、蒸腾速率和气孔导度,灌二棱水和生育后期少灌水的W1、W2、W4处理明显增加花后旗叶胞间CO2浓度。灌水次数减少会显著增加旗叶SPAD值,并降低叶面积系数,其中以缺少二棱水的W3处理最为明显。灌有二棱水和孕穗水的W4处理明显降低抽穗至开花旗叶SPAD值,增加开花至灌浆旗叶SPAD值和抽穗至开花叶面积系数,灌开花水明显增加开花至灌浆旗叶面积。灌二棱水、拔节水、孕穗水、开花水明显促进了干物质积累,灌水次数增加明显增加了叶干物质积累量,并降低茎鞘干物质比例;缺少二棱水的W3处理最不利于叶、穗干物质积累,但提高了开花至成熟叶干物质比例;灌浆水对各器官干物质积累影响不明显。二棱期至开花期缺少灌水的W1、W3、W2处理促进了开花前贮藏同化物在花后向籽粒的转运。籽粒产量随灌水次数的增加而增加;缺少二棱水明显降低穗粒数、收获指数,但增加千粒重;增加灌水次数降低了灌水利用效率,且以灌二棱水影响最为明显。综上所述,缺少二棱水对春小麦产量影响最明显,孕穗水、开花水影响次之,灌浆水影响不明显。  相似文献   

12.
为筛选出商丘地区冬小麦高产和水分高效利用的适宜灌水模式,2011-2013年在大田条件下,以周麦18为试验材料,以全生育期不灌水作为对照(W0),研究了拔节期灌水120mm(W1)、孕穗期灌水120mm(W2)、拔节期和孕穗期各灌水60mm(W3)、拔节期和灌浆期各灌水60mm(W4)以及拔节期、孕穗期和灌浆期各灌水40mm(W5)五种灌溉模式对冬小麦花后旗叶光合、产量及水分利用效率的影响。结果表明,小麦灌浆前期(开花后15d)旗叶净光合速率日变化呈现双峰曲线,分别在11:00和15:00达到峰值。灌水促进了花后旗叶光合作用,净光合速率平均增加145.9%。与W0处理相比,灌水处理在2011-2012和2012-2013年总耗水量分别增加13.8%和18.6%,土壤贮水消耗量和降水量占总耗水中的比例分别下降了60.6%、12.4%和46.2%、15.6%。灌水增加了籽粒产量和水分利用效率,其中在平水年型(2011-2012年)下,W3处理的产量和水分利用率最高,较W0处理分别增加27.5%和8.8%;在丰水年型(2012-2013年)下,以W1处理的产量和水分利用效率最高,较W0处理分别增加65.6%和36.4%。  相似文献   

13.
为了解灌水对不同小麦品种旗叶水分生理特性和产量的影响,于2009-2010年度在田间栽培条件下,以2个小麦品种济麦22和洲元9369为材料,采用测墒补灌的方法研究了不灌水(W0)、拔节期0~140cm土层土壤相对含水量补灌至75%+开花期补灌至70%(W1)、拔节后8d补灌至75%+开花后8d补灌至70%(W2)、拔节后8d补灌至75%+开花后8d补灌至75%(W3)4个不同灌水处理下小麦旗叶渗透调节、光合速率和籽粒产量的差异。结果表明:(1)W3处理的小麦旗叶相对含水量、水势、渗透调节能力和光合速率高于W1和W2处理;济麦22旗叶相对含水量低于洲元9369,旗叶水势、渗透调节能力和光合速率高于洲元9369。(2)W3处理下穗数和千粒重显著增加,但穗粒数显著低于W1处理,以高的灌水量和耗水量获得最高籽粒产量,水分利用效率无显著变化。济麦22籽粒产量、穗数、千粒重、耗水量和水分利用效率均显著高于洲元9369,穗粒数低于洲元9369。本试验条件下,在拔节后8d和开花后8d0~140cm土层平均土壤相对含水量补灌至75%,是兼顾节水和高产的最优处理。  相似文献   

14.
限水减氮对高产麦田群体动态和产量形成的影响   总被引:1,自引:0,他引:1  
为解决河北省水资源匮乏和麦田施氮量偏多问题,于2013~(-2)014和2014~(-2)015年度,在河北省石家庄市藁城区分别设置限水灌溉的单因素试验和限水减氮的二因素裂区试验,研究了限水减氮对河北省高产麦田群体动态和产量的影响。结果表明,在2013~(-2)014年度,限水灌溉处理(拔节期45mm、开花期30mm、灌浆期30mm,春季总灌水量105mm)与节水灌溉对照(拔节期60mm、开花期60mm,春季总灌水量120mm)间小麦叶面积指数、光能截获率、生物产量、穗数和穗粒数差异均不显著;限水灌溉的千粒重显著增加,籽粒产量为10 081.08kg·hm~(-2),水分利用效率为27.98kg·hm~(-2)·mm-1。在2014~(-2)015年度,限水灌溉处理中W3处理(拔节期37.5mm、开花期15mm、灌浆期15mm,春季总灌水量67.5mm)的叶面积指数、光能截获率与节水灌溉对照(拔节期67.5mm、开花期67.5mm,春季总灌水量135mm)无显著差异,穗数和穗粒数有所降低,但千粒重显著增加,籽粒产量8 903.70kg·hm~(-2),比节水灌溉对照减产7.95%,生物产量降低7.15%,但水分利用效率和灌水利用效率分别提高9.28%和84.10%,且未显著增加0~140cm和0~200cm土层贮水的消耗,是本试验条件下保证高产高效的最佳限水灌溉模式。120、180和240kg·hm~(-2)的3个施氮水平间各指标差异均不显著。综合节水高产和减氮增效的现状,以小麦拔节期灌水37.5mm、开花期15mm、灌浆期15mm的灌溉模式结合生育期施N 120kg·hm~(-2)为本试验条件下的最优限水减氮组合。  相似文献   

15.
为明确春季调控措施对冬小麦生长发育和籽粒产量的影响,以冬小麦品种石新828为材料进行田间试验,4个处理分别为:起身期追全部氮肥(除基肥外,下同)并叶面喷多效唑(N1);起身期追2/3氮肥并喷多效唑+拔节期追1/3氮肥(N2);起身期追1/3氮肥+拔节期追2/3氮肥(N3);拔节期追全部氮肥(N4)。生育期间测定群体和个体生育特性,成熟期调查产量性状。结果表明,N1和N2处理小麦拔节期的总茎数、叶面积指数(LAI)和干物质积累量均显著高于N4和N3处理。孕穗期N4和N3处理小麦的总茎数、LAI和干物质积累量显著高于N1和N2处理。开花到成熟期各处理的总茎数、LAI和干物质积累量差异均不显著。孕穗期前,不同处理的株高差异不显著,孕穗期后,N4处理的株高最高,且显著高于N1处理。各处理基部节间直径和中上部节间长的差异不显著,N4处理基部第一节间长度显著大于其他处理。随追氮时期前移或前期施氮量增多,不孕小穗数减少,结实小穗和穗粒数增加,N1比N4处理不孕小穗数显著减少,结实小穗和穗粒数显著增多。N1处理小麦成熟期的千粒重最高,且显著高于N4处理。N1处理的籽粒产量最高,且显著高于N3和N4处理。起身期追氮配合多效唑调控,可以获得比拔节期追氮更高的穗粒数和千粒重,从而获得更高的产量。  相似文献   

16.
为探讨宽幅播种条件下种植密度对小麦群体结构和光能利用率的影响,以小麦品种济麦22为试验材料,在大田试验条件下设置90×104 株·hm-2(D1)、180×104 株·hm-2(D2)、270×104 株·hm-2(D3)、360×104 株·hm-2(D4)4个种植密度处理,分析了不同种植密度下麦田0~100 cm土层土壤相对含水量、小麦群体动态、叶面积指数、冠层光截获特性、光能利用率、阶段干物质积累量、籽粒产量及水分利用效率的特点。结果表明,D2处理的麦田0~100 cm土层土壤相对含水量在返青期显著高于D3、D4处理,与D1处理无显著差异;在拔节期、开花期、成熟期D2处理显著高于D1、D4处理,与D3处理差异不显著。群体总茎数在越冬期、返青期、拔节期均随种植密度的增加而增加,且不同处理之间差异显著,在开花期、成熟期D4处理显著高于其他处理,D3、D2处理差异不显著,但显著高于D1处理;分蘖成穗率在D2处理下达到最大值,为52.51%;D2处理的叶面积指数在开花后0 d、开花后7 d、开花后14 d显著高于其他处理;开花后7 d,D2处理的冠层光合有效辐射截获量、截获率、光能利用率均显著高于D1、D3、D4处理,冠层光合有效辐射透射率表现为D3、D2处理差异不显著,但显著低于D4处理和D1处理。D2处理的拔节至开花阶段、开花至成熟阶段干物质积累量显著高于其他处理,单位面积穗数随种植密度的增加而增加,但D2、D3处理差异不显著;穗粒数、千粒重随种植密度的增加而降低,D1、D2处理差异不显著,但显著高于D3、D4处理;籽粒产量及水分利用效率均在D2处理下达到最大值,分别为9 158.71 kg·hm-2、17.21 kg·hm-2·mm-1。这说明在本试验条件下,180×104 株·hm-2为构建宽幅播种小麦合理群体结构、提高群体光能利用率、籽粒产量及水分利用效率的最优种植密度。  相似文献   

17.
为探究不同灌溉策略下冬小麦水分利用和生长的情况,在总灌溉量相同的前提下设置拔节水+开花水单次参比蒸散30%灌溉(W1)、拔节水+开花水单次参比蒸散60%灌溉(W2)和拔节水+开花水大水漫灌(W3)3种灌溉策略,利用称重式蒸渗仪和diviner 2000研究了不同灌溉策略下冬小麦的耗水动态、蒸散特征和水分利用效率。结果表明,大水漫灌处理(W3)下冬小麦主要利用上层(0~50 cm)土壤水分,而低速率灌溉(W2和W1)处理增强了植株根系对深层(70~100 cm)土壤水分的吸收;同时,低速率灌溉可以降低蒸散速率,W3、W2和W1的日蒸散速率最大值在拔节水灌溉期间分别为13.20、10.82和10.58 mm·d-1,在开花水灌溉期间分别为15.10、10.57和9.10 mm·d-1,其中低速率灌溉主要降低了单日蒸散的午间高峰值,减少了无效耗水。大水漫灌处理不利于生长后期株高的增加,而低速率灌溉不仅有利于株高的形成,也有利于叶片维持较高水平且稳定的SPAD值,保证了籽粒灌浆,使得W2处理的穗粒数和千粒重较W3处理分别提高7.25%和3.93%。综合来看,低速率灌溉策略通过低量持续的供水改变了冬小麦植株根系对土壤水利用的层次,减少无效水蒸散,维持叶片稳定的光合能力,提高了产量和水分利用效率。  相似文献   

18.
不同春生叶龄期追氮对冬小麦产量形成和抗倒性能的影响   总被引:1,自引:0,他引:1  
为明确兼顾冬小麦高产和抗倒伏的春季最佳追氮时期,设置品种、追氮期二因素裂区试验,其中,2015-2016年以山农16(SN16)和石新828(SX828)2个品种为主区,2016-2017年以藁优2018(GY2018)、科农2009(KN2009)和石4366(SH4366)3个品种为主区,两年均以春3、4、5、6叶伸出时分别追施总施N量240 kg·hm-2中的50%氮肥(分别用N3~N6表示)为副区。在关键生育时期调查群体总茎数,成熟期调查茎秆抗倒伏相关性状及产量构成因素。结果表明,拔节至孕穗期一般以N3或N4处理总茎数最多,开花至成熟期一般以N4处理的穗数最多,N5处理的成穗率最高;孕穗期至开花后24 d,N4处理的叶面积指数(LAI)最大,N6处理的最小;大部分品种以N4处理的株高最高,不同叶龄期追氮处理的重心高度则因品种而异;N4处理小麦基部第2节间最长,节间充实度和机械强度最小,N3和N4处理的抗倒指数最低。抗倒指数和机械强度与株高、重心高度、节间长度均呈极显著负相关,与节间直径、茎壁厚度和充实度均呈极显著正相关。不同叶龄期追氮对每公顷穗数和穗粒数的影响较小,大部分小麦品种以N4处理的穗数最多,且施氮处理间的差异一般不显著。石新828和藁优2018各施氮处理千粒重的差异不显著,另外3个品种N4处理的千粒重高于其他处理。5个品种中除藁优2018以N5处理的籽粒产量最高外,其他品种均以N4处理的籽粒产量最高,且均与N5处理的差异不显著。综合来看,春4叶期追氮产量性状最优而倒伏风险最大;春5叶期追氮的籽粒产量与春4叶期追氮的差异不显著,但其抗倒能力显著提高,可以兼顾高产和抗倒伏,因此,春5叶期为河北平原春季最佳追氮时期。在灌水条件常成为限制因素的该地区小麦生产中,春4叶至春5叶期根据水源情况灌水和随水追施氮肥,都是比较适宜的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号