首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为明确拟南芥At2g04450启动子对靶标基因表达的启动作用,根据已报道的拟南芥基因组序列设计合成1对引物,以拟南芥基因组DNA为模板克隆At2g04450上游调控序列,并与pBAR-GUS中间表达载体相连构建植物表达载体p04450p-GUS,采用农杆菌GV3101介导的渗透法转化野生型拟南芥,以GUS为报告基因研究该调控序列的组织表达特异性以及病原菌PstDC3000对该启动子的诱导表达效果。结果表明:获得At2g04450上游调控序列,该序列不仅具有启动子活性,并且具有组织特异性,GUS基因主要在根特异表达;病原菌PstDC3000对该启动子的表达没有诱导作用。本结果将为研究At2g04450的功能奠定基础。  相似文献   

2.
为筛选甘蓝型油菜胚胎特异性表达启动子,以甘蓝型油菜冬性品种Darmor的叶片基因组为模板,克隆了Bna A09g21960D基因上游990bp的启动子序列。顺式调控元件的预测分析表明,该启动子除具有核心调控元件TATA box和CAAT-box外,还含多个组织特异性、激素、逆境、光合作用等表达相关的顺式作用元件,如ABRE、GCN4_motif、TGACG-motif等。为了验证该基因启动子的表达模式,构建了由其驱动GUS报告基因的植物融合表达载体DX2181-p Bna A09g21960D,并采用农杆菌介导的花序浸染法转化野生型拟南芥。对筛选和鉴定的阳性转基因株系进行GUS组织化学法染色,结果表明GUS活性在拟南芥胚胎中特异表达,而在其他组织和器官均未表达,这表明p Bna A09g21960D具有驱动GUS报告基因在拟南芥种子胚胎中特异表达的潜质。这为该启动子在转基因技术提高油菜品质方面和人工创建种质资源等方面的应用提供了较好的基础。  相似文献   

3.
为了进一步解析大豆中重要植物开花和花器官发育调控转录因子AP2的编码基因TOE的进化规律及其对开花功能的调控作用,为大豆TOE基因的功能解析和大豆纬度适应性研究提供基础,本研究利用生物信息学手段对大豆TOE基因进行聚类分析、序列特征分析、染色体区段共线性分析和组织特异性表达分析,预测关键开花基因启动子区段AP2结合位点,并验证不同单倍型大豆开花时间.结果 显示:从PlantTFDB数据库检索到12个大豆TOE基因,GmTOE6b(Glyma.02G087400)为新发现的大豆TOE基因.GmTOE6a和GmTOE6b均只有1个AP2结构域,其余大豆TOE基因均有两个AP2结构域.6个大豆TOE基因与拟南芥TOE1基因聚为一类;2个与拟南芥TOE2基因聚为一类;4个与拟南芥TOE3、AP2聚为一类.12个大豆TOE基因都有且仅有1个miR172靶位点,且该靶位点序列与拟南芥TOE的miR172靶位点序列高度一致.染色体区段共线性分析显示,大豆12个TOE基因按起源方式可以分为3类,6个随大豆基因组复制而产生;4个起源于大豆物种形成之前且与拟南芥TOE基因有共同祖先;2个起源于大豆物种形成之前且与拟南芥TOE基因无共同祖先.大豆开花关键基因GmFT2a和GmFT5a启动子序列中均含有多个AP2结合位点,GmTOE4b和GmTOE5b两个基因均可影响大豆的开花时间.研究结果说明大豆中12个TOE基因极有可能均是miR172的靶基因,虽然其编码蛋白的氨基酸组成非常相似,但它们的进化规律和组织特异性表达规律存在不同,它们在进化过程中可能存在功能分化.GmTOE4b和GmTOE5b可能通过结合GmFT2a和GmFT5a启动子上的顺式元件来调控其基因转录,从而调控开花.  相似文献   

4.
大豆(Glycine max (L.) Merr.)GmFTL3和GmFTL5基因具有很高的序列相似性,均参与大豆开花调节,但表达模式并不相同,本研究以启动子为突破口,分析这两个基因之间的表达差异。从大豆品种天隆1号中克隆GmFTL3和GmFTL5的启动子,构建载体pGmFTL3pro::GUS和pGmFTL5pro::GUS,转化拟南芥进行GUS染色分析。结果显示:无论长日条件还是短日条件,苗期和花器官中GmFTL3启动子均不驱动GUS基因在拟南芥中表达,而GmFTL5启动子则驱动GUS基因在拟南芥中表达,且在苗期的不同阶段呈现组织表达特异性。在花器官中,GmFTL5启动子驱动GUS基因主要在花萼、花瓣、花药和花粉粒中表达。实时定量结果显示,在大豆中,GmFTL3和GmFTL5基因均有表达。综上所述,大豆GmFTL3启动子在大豆中有活性但在拟南芥中无活性;GmFTL5启动子在大豆和拟南芥中均有活性,但表达可能存在差异; GmFTL5启动子在花器官中表达可能暗示GmFTL5基因与花器官发育有关。  相似文献   

5.
大豆(Glycine max L.Merr.)GmFTL3和GmFTL5基因具有很高的序列相似性,均参与大豆开花调节,但表达模式并不相同,本研究以启动子为突破口,分析这两个基因之间的表达差异。从大豆品种天隆1号中克隆GmFTL3和GmFTL5的启动子,构建载体p GmFTL3pro::GUS和p GmFTL5pro::GUS,转化拟南芥进行GUS染色分析。结果显示:无论长日条件还是短日条件,苗期和花器官中GmFTL3启动子均不驱动GUS基因的表达,而GmFTL5启动子则驱动GUS基因在拟南芥中表达,且在苗期的不同阶段呈现组织表达特异性。在花器官中,GmFTL5启动子驱动GUS基因主要在花萼、花瓣、花药和花粉粒中表达。实时定量结果显示,在大豆中,GmFTL3和GmFTL5基因均有表达。综上所述,大豆GmFTL3启动子在大豆中有活性但在拟南芥中无活性;GmFTL5启动子在大豆和拟南芥中均有活性,但表达可能存在差异;GmFTL5启动子在花器官中表达可能暗示GmFTL5基因与花器官发育有关。  相似文献   

6.
通过在大豆基因组数据库中检索拟南芥AtMP(ARF5)在大豆中的同源基因,获得了GmMP基因序列。对GmMP基因编码的氨基酸序列及启动子序列进行生物信息学分析,结果表明:GmMP基因CDS序列全长2 802 bp,编码933个氨基酸。GmMP编码的蛋白为疏水性蛋白。结构域分析表明:GmMP含有B3和AUXIN RESPONSE FACTOR结构域,同时该基因是ARF家族的成员。GmMP预测的启动子区域含有与激素、胁迫、光应答、生物钟调控和转录因子结合相关的顺式作用元件。系统进化分析表明MP在豆科植物进化过程中比较保守。组织特异性表达分析结果显示GmMP在叶片中表达量最低,在茎尖中表达量最高,推测其可能参与生长素的代谢途径。  相似文献   

7.
启动子作为基因调控的重要元件,决定着下游基因表达的时空和强度特性。为研究大豆GmbZIP33基因启动子功能,在前期克隆获得GmbZIP33基因(Glyma.03G219300.1)序列的基础上,通过N-PCR(nested PCR)技术克隆了GmbZIP33 CDS上游启动子区序列(2 316 bp)。利用PlantCARE在线分析软件进行顺式作用元件的预测,发现该序列上除含有TATA-box和CAAT-box等核心调控元件外,同时包括与抗逆、光响应、激素响应、蔗糖应答元件和多个与组织特异性表达相关的元件。为研究GmbZIP33启动子的表达调控特性,构建了该启动子调控报告基因GUS表达的载体,并利用农杆菌介导的花序浸染法将其转入拟南芥中,发现该启动子驱动下的GUS基因在不同组织(莲座叶、花、荚果和根)的维管束中均特异性表达;对转基因拟南芥进行实时荧光定量PCR检测发现,GUS基因在花中表达量最高,荚果中次之,表明GmbZIP33基因可能受到多种因素和蔗糖的调节并参与花荚发育的调控。  相似文献   

8.
大豆组织特异启动子的克隆与功能分析   总被引:1,自引:0,他引:1  
采用同源序列法克隆得到了大豆根部特异性启动子、种皮特异性启动子、种子特异性启动子,核苷酸序列大小分别为2 500bp、1 832bp、1 268bp,分别具有CANNTG-motifs、GATA-box、ACGT等启动子表达元件,并分别构建了这3个组织特异性启动子的植物报告表达载体。通过农杆菌介导法将3个表达载体转入烟草NC89,通过组织化学染色和GUS基因的相对表达量分析验证3个启动子的功能。通过转化获得了根部特异性启动子转基因烟草植株11株,种皮特异性启动子转基因烟草植株4株,种子特异性启动子转基因烟草植株8株,转35S启动子启动GUS基因的阳性烟草植株7株。GUS化学组织染色结果表明,克隆得到的根、种皮、种子特异性启动子都表现为组织特异性表达,表达水平明显高于叶片、茎部、花等部位。进一步的荧光定量PCR结果显示,根部特异性启动子GUS的相对表达量在根部最高,而在茎、叶、种子、种皮、花中表达量较低;种皮部特异性启动子GUS的相对表达量在种皮最高,而在根、茎、叶、种子、花中表达量较低;种子特异性启动子GUS的相对表达量在种子最高,而在根、茎、叶、种皮、花中表达量较低,但是与35S启动子相比,这3个特异性启动子的GUS相对表达量在相应的组织均低于35S启动子。  相似文献   

9.
构建了在油菜中新克隆的种子特异表达启动子NAPIN驱动GUS的植物表达载体pB1121 NAPIN-BAR,并利用真空渗透法转入拟南芥基因组中.转基因拟南芥后代卡那霉素抗性发生分离,选取具有3:1分离比的后代自交,产生纯合的具有单拷贝插入的后代,并通过PCR确认有植物表达载体特有的BAR基因启动子35S序列的插入.转基因后代GUS染色结果表明,GUS染色主要出现在角果皮位置,幼苗期只有子叶能被染色.新克隆的NAPIN启动子控制基因只在和种子有关的部位和种子衍生的部位表达.  相似文献   

10.
通过在大豆基因组数据库中检索拟南芥At ABCG40在大豆中的同源基因,获得了Gm ABCG40基因序列。通过对Gm ABCG40基因编码的氨基酸序列及启动子序列进行生物信息学分析,结果表明:Gm ABCG40基因CDS序列全长4 284 bp,编码1 427个氨基酸。Gm ABCG40编码的蛋白为疏水性蛋白,具有多个N-糖基化位点、激酶磷酸化位点、N-豆蔻酰化位点、2个ATP/GTP结合位点基序A和1个速激肽家族信号。结构域分析表明Gm ABCG40含有2个核苷酸结合域与2个跨膜结构域,形成NBD1-TMD1-NBD2-TMD2结构,属于ABCG亚家族的成员。Gm ABCG40预测的启动子区域含有与激素、胁迫、光应答、胚乳表达和转录因子结合相关的顺式作用元件。系统进化分析表明Gm ABCG40与菜豆、红豆、木豆、百脉根等豆科植物亲缘关系较近。组织特异性表达分析结果显示Gm DABCG40在叶片中表达量最低,在根中表达量最高,推测其可能参与根中ABA的转运过程。  相似文献   

11.
安吉白茶正常与白化叶片基因表达差异的初步研究   总被引:4,自引:2,他引:2  
用mRNA差别显示技术(DDRT-PCR)研究了茶树温敏突变体——安吉白茶正常叶片和白化叶片的基因表达差异。从58个差异表达的片段中通过半定量RT-PCR鉴定出12个阳性片段,其中5个片段在正常叶片中特异表达,4个在白化叶片中特异表达,1个在绿色叶片中上调表达,2个在白化叶片中上调表达。通过与GenBank BLASTX比对分析,5个基因片段比对出相似序列,分别为拟南芥的血红素结合蛋白家族中心区域基因、甜菜的甲硫氨酸合酶基因、苜蓿的一个逆转座子基因、人类20号染色体上的一段3-磷酸甘油醛脱氢酶假基因和玫瑰的ACC合成酶基因,其余7个片段未比对上同源序列,可能为新基因。  相似文献   

12.
为改良甘蓝型油菜菜籽油脂肪酸的组分,根据拟南芥Δ9硬脂酰ACP脱氢酶(SAD)核酸序列特征,检索白菜全基因组SAD基因和cDNA的可能序列,通过同源序列法克隆获得6个甘蓝型油菜SAD基因。比对结果显示,这6个基因编码的氨基酸序列同源性达53.2%~96.3%。系统进化分析显示,甘蓝型油菜SAD基因与蓖麻、大豆、芝麻、葵花等6个油料作物SAD基因的序列相似性很高,甘蓝型油菜与这些高等植物的SAD基因在进化上具有较高的保守性。本文还对4个甘蓝型油菜SAD基因BnSAD1:1、BnSAD2:1、BnSAD2:2和BnSAD2:3进行了表达模式分析,发现它们在种子发育过程中表达,并且都在40d的种子中表达量达到最高值,推测这4个基因均参与了硬脂酰ACP (C18:0-ACP)脱氢生成油酰基ACP(Δ9C18:1-ACP)的过程,尤其是BnSAD2:3可能为种子特异表达基因。  相似文献   

13.
低温胁迫下茶树基因表达的差异分析   总被引:4,自引:2,他引:2  
利用cDNA-AFLP技术分析了茶树在低温胁迫下的基因表达差异。用16对引物(256个组合)对三个样品池进行了差异条带的筛选,结果表明,在冷胁迫不同处理时期相关基因表达存在显著差异,共获得了86个差异片段。在选择回收的10条差异表达cDNA片段中,经克隆测序,Blast序列同源性检索,显示其中片段1与一种低温和盐胁迫响应蛋白有77%的同源性,片段5与拟南芥冷诱导表达相关60 s ribosomal protein L7(RPL7B)有89%的同源性;片段8与一种逆境诱导蛋白(Stress-induced H1-Histone protein)有79%的同源性;片段9与干旱条件下的EST序列有着较高的同源性,其它6个片段在GenBank数据库中未找到相似序列,可能为新基因。  相似文献   

14.
分枝数是影响油菜产量的重要株型性状之一。为了有助于油菜分枝数的分子标记辅助育种,以甘蓝型油菜品系888-5(多分枝)和M083(少分枝)杂交形成的重组自交系(RIL)群体为材料,通过利用第一张油菜60KSNP芯片对群体进行高通量SNP分型,并结合单环境和多环境2种QTL检测方法对RIL群体在4个环境(武汉-2012、武汉-2013、扬州-2012和扬州-2013)下分枝数进行QTL定位。结果表明:共检测出18个分枝数QTL,分布于A2、A6、A7、C1和C4连锁群。其中11个QTL在2个以上环境下可重复检测到;有2个QTL与环境之间存在互作效应。主效QTL 2个(qBN2-3和qBNE2-1),分别在3个、4个环境下重复检测到,可解释的表型变异为13.12%~20.60%,2.80%~30.10%。qBNE2-1与环境存在互作效应。另外,通过利用SNP标记侧翼序列和油菜基因组比对作图,从3个QTL(qBN2-1、qBN7-6和q BN7-8,三者可解释的表型变异分别为19.40%~17.30%、5.70%~12.21%和7.88%~10.32%)的基因组区段内(分别为279kb、165kb和562kb)共筛选出4个与分枝数有关的候选基因,它们的拟南芥同源基因(分别为CUC2、PIN3、F23N20.8和PIN4)均参与拟南芥分枝数的分化或形态建成。  相似文献   

15.
组蛋白去乙酰化酶(Histone deacetylases,HDACs)家族基因在植物的生长发育、器官构建及逆境胁迫和激素信号应答中发挥重要作用。利用生物信息学方法对番茄的HDACs家族成员、分布及结构和功能等进行分析。结果表明,番茄HDACs家族包含15个成员,分为3个亚家族。遗传进化分析表明,番茄HDACs家族成员与拟南芥HDACs家族具有相似分类。利用实时荧光定量PCR对番茄HDACs家族基因的组织表达分析表明,HDACs具有组织特异性表达差异,SlHDT1、SlHDT2和SlHDT3在根中表达较高,而SlHDA1、SlHDA3、SlHDA5、SlHDA6在果实发育过程中表达较高;利用RT-PCR对番茄HDACs的胁迫响应分析表明,在盐、SA、ABA、高温和低温胁迫条件下,15个番茄HDACs成员的表达模式不同,其中部分基因的表达水平被显著地诱导增加或者降低,推测这些基因很可能参与了调控番茄逆境胁迫条件下的防御应答反应。结果将为进一步解析番茄HDACs家族基因的功能奠定基础。  相似文献   

16.
自CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)基因 组编辑技术发现以来,迅速在作物中得到广泛应用。但是,CRISPR/Cas9多基因编辑系统在大豆中的研究尚待开 发。本文利用CRISPR/Cas9介导的多基因编辑系统,分别构建了两个载体,一个载体含6个靶点,编辑7个大豆基因 (4个Glycine max ASYMMETRIC LEAVES1(GmAS1)同源基因和3个GmAS2 同源基因),另一个载体含8个靶点,编辑 11个G. max AGAMOUS 家族同源基因(4个GmAG 同源基因,2个G. max SEEDSTICK(GmSTK)同源基因和5个G. max SHATTERPROOF1(GmSHP1/2)同源基因)。大豆遗传转化后,经表型鉴定和靶点检测发现,CRISPR/Cas9介导的多 基因编辑系统在大豆中成功实现了多基因编辑。当3个GmAS1 同源基因和3个GmAS2 同源基因同时突变时,导致 大豆叶片向远轴面弯曲、皱缩且叶柄变短的表型。当2个GmSHP1 同源基因和2个GmSTK 同源基因同时突变时,导 致豆荚停止发育的不育表型。  相似文献   

17.
运用mRNA差异显示技术(DDRT-PCR)对红莲型杂交稻组合红莲优6号及其亲本(粤泰A、扬稻6号)、保持系(粤泰B)苗期、分蘖期根系的基因表达状况进行了分析。结果显示,不同发育时期之间差异表达基因远少于同一时期之间杂种与亲本差异表达基因,苗期和分蘖期差异表达基因数量相近,但同一差异表达类型基因的数量有较大变化,分蘖期杂种表达单亲基因增多;互补表达基因可能对红莲优6号杂种优势的形成起重要作用。MF1差异片段已通过Northern杂交验证;MF1片段克隆测序结果在GeneBank中进行同源序列查对,发现是新的cDNA序列。  相似文献   

18.
Brown planthopper(BPH) is an insect species that feeds on the vascular system of rice plants. To examine the defence mechanism of rice plants against BPH, the pathogenesis-related genes(PR1a, PR2, PR3, PR4, PR6, PR9, PR10a, PR13, PR15 and PRpha), signaling molecule synthesis genes(AOS, AXR, ACO and LOX), antioxidant-related genes(CAT, TRX, GST and SOD) and lignin biosynthesis-related genes(CHS, CHI and C4H) were investigated in a resistant rice variety. AOS, PR6,PR9 and PR15 genes showed significantly increased relative expression levels at 24.38-, 19.17-, 14.71-, and 12.74-fold compared to the control. Moderate increased relative expression levels of lignin biosynthesis-related gene(C4H), pathogenesis-related genes(PR4, PR10a and PRpha), and antioxidant-related gene(GST) were found, while CHI, LOX, SOD, TRX1 and AXR showed decreased relative expression levels. It was thus clearly shown that wound-induced response genes were activated in rice plants after BPH attacks through AOS activation. Jasmonic acid signaling molecule may activate PR6, PR15, GST and CAT subsequently increasing their expression for H_2O_2 detoxification. PR6 were expressed at the highest relative level among the PR genes. These genes therefore have also a considerable synergistic role with the other genes against BPH by interfered their digestion tract system.  相似文献   

19.
Aux/IAA 基因家族在植物茎尖发育过程发挥重要作用。为了探究大豆Aux/IAA 基因家族在大豆茎尖发育过程的调控作用,本文以拟南芥Aux/IAA 基因家族蛋白序列为参照鉴定了大豆全基因组Aux/IAA 家族基因,包括63个成员;然后以拟南芥、鹰嘴豆和大豆的Aux/IAA 家族为研究对象,比对这些基因全长氨基酸序列并构建进化树,结果表明三种作物的Aux/IAA 家族成员间亲缘关系差异明显,进化过程中同源重组频率不同;进而利用RNA-seq技术分析东农594(DN)、Charleston(CH)及二者杂交后代的RIL群体的高矮秆池(WH、WS)和F2群体的高矮秆池(JH、JS)的差异表达基因及其功能,共有17个Aux/IAA 基因在3组材料中差异表达。CHvsDN组有15个差异表达基因,JHvsJS组有2个,WHvsWS组只有1个;其中,Glyma.10G180100 在JHvsJS组和WHvsWS组均差异表达,这些结果为进一步研究大豆Aux/IAA 基因家族的功能及调控茎尖发育提供理论依据。  相似文献   

20.
甘蔗的叶片是制糖过程中杂质的主要来源,育种过程中倾向于选育易脱叶的品种。为了研究甘蔗脱叶性相关的主效、稳定基因,本研究采用BSR-Seq技术,从‘ROC25’ב云蔗89-7’的F1后代中选取极端难脱叶品系和极端易脱叶品系的+6叶位叶鞘离区,分别构建混池,并和亲本一起进行RNA转录组测序分析,共得到60.46 Gb的有效片段,4个样品的Q30值均在93%以上,GC含量都大于51%,与参考基因组R570比对,比对率都超过41%。4个样品共检测出4085个差异基因,候选区域定位于9号染色体上的4个位置,总长1.40 Mb,注释到基因86个,亲本间注释到的非同义突变15个,挖掘出2个主效差异基因(Sh09_g020620,Sh09_g020080),Sh09_g020080在亲本的表达差异和子代中是同向的,而Sh09_g020620在2个亲本和2个子代混池之间的差异是异向的,表明可能仅Sh09_g020080对易脱叶性有所贡献。选取BSR亚群体中极端易脱叶品系40-159和极端难脱叶品系5-94的+1~+7叶进行荧光定量分析,发现Sh09_g020080基因在单一品系的表达和子代混池的+6叶的表达是同向的。取另一个‘B35-9’בCP08-1553’的杂交后代个体中的极端易脱叶品系16-226和极端难脱叶品系16-224的+1~+7叶位的叶鞘离区进行荧光定量分析,结果显示Sh09_g020080在2个群体中+4、+5、+6叶位的表达都为易脱叶的品系高于难脱叶品系。注释显示Sh09_g020080具有σ因子活性,参与红光、远红光、蓝光反应。根据理化性质和蛋白质结构,推测Sh09_g020080编码蛋白具有4个保守区域,且具有积累叶绿素的作用。该研究为甘蔗脱叶相关主效候选基因的挖掘提出了新的见解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号