首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ABSTRACT

Eucalyptus nitens specimens were thermally modified under open and closed systems. The anatomical characteristics from selected modifications that presented similar mass losses were investigated by analyzing images taken from scanning electron microscopy, transmission light microscopy, and X-ray micro-computed tomography. Wood cell wall thickness, fiber, and lumen area were measured and compared to unmodified specimens, and the crack formation after modification was also analyzed. There was only a slight decrease in the measured characteristics when compared to unmodified specimens. The wood cell wall thickness was less affected than the fiber and lumen areas, and both modifications presented similar crack formations. Overall, there were no significant differences between open and closed system modifications in the anatomical structure.  相似文献   

2.
Abstract

Thermal modification at elevated temperatures changes the chemical, biological and physical properties of wood. In this study, the effects of the level of thermal modification and the decay exposure (natural durability against soft-rot microfungi) on the modulus of elasticity (MOE) and modulus of rupture (MOR) of the sapwood and heartwood of Scots pine and Norway spruce were investigated with a static bending test using a central loading method in accordance with EN 408 (1995). The results were compared with four reference wood species: Siberian larch, bangkirai, merbau and western red cedar. In general, both the thermal modification and the decay exposure decreased the strength properties. On average, the higher the thermal modification temperature, the more MOE and MOR decreased with unexposed samples and increased with decayed samples, compared with the unmodified reference samples. The strength of bangkirai was least reduced in the group of the reference wood species. On average, untreated wood material will be stronger than thermally modified wood material until wood is exposed to decaying fungi. Thermal modification at high temperatures over 210°C very effectively prevents wood from decay; however, strength properties are then affected by thermal modification itself.  相似文献   

3.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

4.
Genetic- and environmental variation and correlation patterns were characterized for modulus of elasticity (MOE), modulus of rupture (MOR) and related wood traits: latewood proportion, wood density, spiral grain, microfibril angle and lignin content in five full-sib families of Norway spruce. The families were evaluated on the basis of clearwood specimens from the juvenile -mature wood transition zone of 93 sampled trees at age 30 year from seed. Family-means varied significantly (p < 0.05) for all wood traits studied except lignin content. MOE varied between 7.9–14.1 GPa among trees and 9.4–11.0 GPa among families. MOR varied between 47–87 MPa among trees and 61–71 MPa among families. Families remained significantly different in an analysis of specific MOE (MOE/density) and MOR (MOR/density). Hence, solely relying on wood density as a wood quality trait in tree breeding would not fully yield the potential genetic gain for MOE and MOR. Correlations between wood structural traits and specific MOE and MOR are presented and discussed.  相似文献   

5.
Quality assessment of thermally modified spruce (Picea abies (L.) Karst) and beech (Fagus sylvatica L.) wood and of the corresponding reference samples was carried out by means of non-destructive FT-NIR spectroscopic measurements and PLS regression. Oven-dry and basic density as well as MOE and MOR determined by 3-point bending tests were evaluated. The focus was put on specimens produced from material that had been thermally modified in an industrial scale kiln. Modelling results range from poor to very good. The results of the spectra taken from the spruce samples resulted in better prediction results than the spectra of the beech samples. This could be due to different proveniences or variation in the industrial modification process. The results indicate that FT-NIR surface measurements of sound thermally modified wood samples could be applied to evaluate several characteristics before and after the modification process. The method could be used for screening during pre-sorting of thermally modified wood.  相似文献   

6.
杉木热处理材结晶度及力学性能的研究   总被引:1,自引:0,他引:1  
热处理对木材力学性能的影响是多样的,这与热处理条件下木材的物理化学变化密切相关。本次研究将杉木板材在160℃、180℃和220℃常压蒸汽条件下进行热处理,考察处理材的结晶度、抗弯弹性模量、抗弯强度及相互可能的关联。结果表明,热处理使试材结晶度增加,有助于提高木材的刚性,使热处理材的抗弯弹性模量高于常规对照材;结晶度的提高对抗弯强度没有改善作用,热处理后试材的抗弯强度明显下降。  相似文献   

7.
Specimens of beech, ash, lime and poplar were thermally modified (T) and treated with an aqueous solution of melamine (M) resin to investigate the mechanical changes after combined (double) modification (TM). Density, solution uptake, weight percent gain, bulking and equilibrium moisture content were recorded to ensure proper treatment. Samples for Brinell hardness and three-point bending were cured at 120°C under dry conditions. The WPGs of the two treatment groups M and TM were similar, but bulking of TM specimens was negative. This might indicate an incomplete penetration into the thermally modified cell wall in combination with a potential leaching of soluble hemicellulose components by the alkaline impregnation solution. The decreased hardness of heat-treated wood was substantially increased by melamine treatment (combined modification). Both modifications and their combination slightly increased the modulus of elasticity. The modulus of rupture was increased after melamine treatment, decreased after thermal modification and combined modification. The work in bending was severely reduced for all treatments. Melamine treatment of thermally modified wood was carried out successfully and some mechanical properties were improved. Double-modified wood with increased modulus of rupture (MOR) and extraordinary surface hardness would be suitable for non-structural outdoor applications such as decking and cladding.

Abbreviations: ANOVA: Analysis of variance; EMC: Equilibrium moisture content; EMCR: Reduced (corrected) equilibrium moisture content; IB: Impact bending strength; M: Melamine treated; MOE: Modulus of elasticity; MOR: Modulus of rupture; MUF: melamine-urea-formaldehyde resin; OD: Oven dry density; R: Untreated references; RH: relative humidity; SC: Solid content; SU: Solution uptake; T: Thermally modified; TM: Thermally modified and melamine treated (double modification); WB: Work in bending; WPG: Weight percent gain  相似文献   


8.
The purpose of this study was to determine the modulus of elasticity (MOE) and the modulus of rupture (MOR) in the radial bending test for small, clear specimens of Finnish birch (Betula pendula Roth and B. pubescens Ehrh) wood originating from mature trees. The dependency of MOE and MOR on the specific gravity of birch wood was studied, and the relationship between MOE and MOR was modelled at the different heights and at the different distances from the pith of the tree. For B. pendula, the mean values for MOE and MOR were 14.5 GPa and 114 MPa, whereas B. pubescens had means of 13.2 GPa and 104 MPa, respectively. At the corresponding specific gravity, the bending stiffness and strength values did not differ between the two species. The results indicated a linear relationship between the MOE and MOR, irrespective of the birch species or the within-stem location. Both MOE and MOR increased clearly from the pith towards the surface of the tree and decreased slightly from the base to the top of the tree. It seems that if products with as high stiffness and bending strength as possible are wanted, sorting of raw materials into different grades according to their within-tree origin can be of value.  相似文献   

9.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

10.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

11.
The present study is aimed at investigating the effect of heat treatment of nano-silver-impregnated Populus nigra on weight loss, modulus of rupture (MOR), modulus of elasticity (MOE), and compression parallel to grain. Specimens were impregnated with 200 PPM water-based solution of nano-silver particles at 2.5 bar in a pressure vessel. For heat treatment, both nano-silver-impregnated and simple specimens were kept for 24 h at 45°C and then further for 24 h at 145°C and finally for 4 h at 185°C. MOR decreased from 529 to 461 kg/cm2 in heat-treated specimens; MOE and compression parallel to grain were though improved. Also, comparison between heat-treated and nano-silver-impregnated heat-treated specimens showed that there was a decrease in MOR and MOE in nano-silver-impregnated heat-treated specimens. This shows that nano-silver impregnation facilitates transfer of heat in wood and it may increase the process of degradation and pyrolysis of wood structures in deeper parts of specimens.  相似文献   

12.
ABSTRACT

The main goal of this study was to investigate the visual characteristics, recovery rate, and flexural properties of sawn boards from a fibre-managed plantation Eucalyptus globulus resource as a potential raw material for structural building applications. The impacts of the visual characteristics, strength-reducing features, and variation in basic density and moisture content on the bending modulus of elasticity (MOE) and modulus of rupture (MOR) of the boards were investigated. The reliabilities of different non-destructive methods in predicting MOE and MOR of the boards were evaluated, including log acoustic wave velocity measurement and numerical modellings. The MOE and MOR of the boards were significantly affected by the slope of grain, percentage of clear wood, and total number of knots in the loading zone of the boards. The normal variation in basic density significantly influenced the MOE of the boards while its effect on the MOR was insignificant. The numerical models developed using the artificial neural network (ANN) showed better accuracies in predicting the MOE and MOR of the boards than traditional multi-regression modelling and log acoustic wave velocity measurement. The ANN models developed in this study showed more than 78.5% and 79.9% success in predicting the adjusted MOE and MOR of the boards, respectively.  相似文献   

13.
木材易产生吸湿变形和腐朽等问题,影响其应用效果。热改性处理可有效提升木材的尺寸稳定性和耐久性,并具有无毒、环保的特点,是一种极具潜力的木材改性方法。文中综述了木材组分(纤维素、半纤维素、木质素、抽提物)在热改性过程中发生的化学变化,以及木材树种和部位、处理介质、处理温度和时间对木材热降解的影响。经不同热改性工艺处理后,木材的化学成分变化存在较大差异。探明热改性工艺、热改性材化学成分变化和性能之间的响应机制,将有助于开发或优化热改性技术,从而得到性能优异的热改性材,拓宽其应用领域。  相似文献   

14.
Changes in the modulus of elasticity (MOE), modulus of rupture (MOR), and stress relaxation in the radial direction of wood (hinoki:Chamaecyparis obtusa) moisture-conditioned by the adsorption process from a dry state and by the desorption process from a moisture content slightly below the fiber saturation point were investigated. The MOE and MOR of wood conditioned by the adsorption process showed significant increases during the later stages of conditioning when the moisture content scarcely changed. However, with the desorption process they did not increase as much during later stages of conditioning, though they increased during early stages of conditioning when the moisture content greatly decreased. The stress relaxation of wood decreased with an increase in the conditioning period with both the adsorption and desorption processes. These results suggest that wood in an unstable state, caused by the existing state of moisture differed from that in a true equilibrium state shows lower elasticity and strength and higher fluidity than wood in a true equilibrium state. Furthermore, the present study demonstrates that the unstable states of wood induced during the course of drying, desorption, and possibly adsorption of moisture are slowly modified as wood approaches a true equilibrium state.  相似文献   

15.
Three softwoods, Sugi (Cryptomeria japonica), Korean Pine (Pinus koraiensis) and Hinoki (Chamaecyparis obtusa), were vacuum–pressure impregnated with a fire retardant chemical consisting of ammonium phosphate polymer (APP), guanyl urea phosphate (GUP), phosphonic acid and a minor amount of additives. The variation in impregnation between and within wood species was investigated. A significant relationship and similar trends were found between fire retardant chemical (FR) uptake and specific gravity (SG), as well as void volume filled (VVF) and SG. Moreover, the effects of fire retardant treatment on mechanical properties, including modulus of rupture (MOR), static modulus of elasticity (MOE) and dynamic modulus of elasticity (DMOE), were evaluated. The results indicated that the trend of impregnation and regression function varied between species and positions within the same species. However, the relationship of SG and chemical uptake and that of VVF and chemical uptake could be represented by a positive linear regression, and the trends were similar between wood species. Both of SG and VVF increased with increasing FR uptake. After fire retardant treatment, the MOR and static MOE were reduced compared with before treatment. Conversely, the DMOE increased after treatment.  相似文献   

16.
The effects of different thinning and pruning methods on the bending strength and dynamic modulus of elasticity (DMOE) of young Taiwania (Taiwania cryptomerioides Hay) were investigated. The average DMOE, modulus of elasticity (MOE), and modulus of rupture (MOR) in the thinning treatments showed the following trend: no thinning > medium thinning > heavy thinning. This indicates that thinning reduces average bending properties. The average DMOE, MOE, and MOR in the pruning treatments showed the following trend: medium pruning > no pruning > heavy pruning. According to this tendency, better average qualities of lumber and specimens were from wood subjected to no-thinning and medium-pruning treatments according to an ultrasonic wave technique and static bending tests. However, most results showed no statistically significant differences among thinning, pruning, and thinning and pruning treatments. The average values of DMOE, MOE, and MOR of visually graded construction-grade lumber were significantly greater than those of below-grade lumber. Moreover, there were very significant positive relationships between density, ultrasonic velocity, DMOE, MOE, and MOR, although the determination coefficients were small.  相似文献   

17.
Some of the properties of particleboard made from paulownia   总被引:3,自引:0,他引:3  
The objective of this study was to determine some of the properties of experimental particleboard panels made from low-quality paulownia (Paulownia tomentosa). Chemical properties including holocellulose, cellulose, lignin contents, water solubility, and pH level of the wood were also analyzed. Three-layer experimental panels were manufactured with two density levels using urea–formaldehyde as a binder. Modulus of elasticity (MOE), modulus of rupture (MOR), internal bond strength (IB), screw-holding strength, thickness swelling, and surface roughness of the specimens were evaluated. Panels with densities of 0.65 g/cm3 and manufactured using a 7-min press time resulted in higher mechanical properties than those of made with densities of 0.55 g/cm3 and press times of 5 min. Based on the initial findings of this study, it appears that higher values of solubility and lignin content of the raw material contributed to better physical and mechanical properties of the experimental panels. All types of strength characteristics of the samples manufactured from underutilized low-quality paulownia wood met the minimum strength requirements of the European Standards for general uses.  相似文献   

18.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

19.
Although wood/cellulose-plastic composites (WPC) of low wood/cellulose content have been more accepted worldwide and are promoted as low-maintenance, high-durability building products, composites containing high wood/cellulose content are not yet developed on an industrial scale. In this study, flow properties, mechanical properties, and water absorption properties of the compounds of cellulose microfiber/polypropylene (PP) and maleic anhydride-grafted polypropylene (MAPP) were investigated to understand effects of the high cellulose content and the dimensions of the cellulose microfiber. The molding processes studied included compression, injection, and extrusion. It was found that fluidity is not only dependent on resin content but also on the dimension of the filler; fluidity of the compound declined with increased fiber length with the same resin content. Dispersion of the composite was monitored by charge-coupled device (CCD) microscope. Increasing the plastic content in the cellulose-plastic formulation improved the strength of mold in addition to the bond development between resin and filler, and the tangle of fibers. The processing mode affected the physicomechanical properties of the cellulosic plastic. Compression-molded samples exhibited the lowest modulus of rupture (MOR) and modulus of elasticity (MOE) and the highest water absorption, while samples that were injection-molded exhibited the highest MOR (70 MPa) and MOE (7 GPa) and low water absorption (2%).  相似文献   

20.
The investigation of genetically modified trees requires rapid and reliable techniques to measure the mechanical properties at an early age in order to give timely feedback to forest geneticists. In this study, transmittance near-infrared (NIR) spectroscopy was used to predict the green mechanical properties of 1- and 2-year-old transgenic and wild-type aspen. Green modulus of elasticity (MOE) in three-point bending and green ultimate compression strength (UCS) parallel to the grain were predicted from the NIR spectra of dry wood meal pellets. Green UCS had strong correlation (R 2 = 0.91) and green MOE had good correlation (R 2 = 0.78) with the spectra. The latter could be explained by the moderate correlation of MOE with the lignin content of the transgenic samples, suggesting that besides chemical composition MOE also depends on anatomical properties. The ratio of performance to deviation value suggested that the calibration model of both UCS (2.94) and MOE (1.91) could be used for screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号