首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

2.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

3.
Abstract

One of the main objectives of thermal modification is to increase the biological durability of wood. In this study the fungal resistance of Norway spruce and Scots pine, thermally modified at 195°C and 210°C, was studied with a lap-joint field test. Untreated pine and spruce and pine impregnated with tributyl tin oxide (TBTO) and copper, chromium and arsenic (CCA) were selected as reference materials. The evaluations were carried out after 1, 2 and 9 years of exposure. After 1 and 2 years of exposure mainly discoloration was detected. Only the untreated pine was slightly affected by decay fungi. There were significant differences in the decay ratings of untreated and thermally modified wood materials after 9 years in the field. While the untreated wood materials were severely attacked by decay fungi or reached failure rating, only small areas of incipient decay were detected in the thermally modified samples. Thermally modified pine was slightly more decayed than thermally modified spruce. The only wood material without any signs of decay was CCA-treated pine, since some of the TBTO-treated pine samples were also moderately attacked by fungal decay. The results of the lap-joint test had a good correlation with mass losses in a laboratory test with brown-rot fungi.  相似文献   

4.
Abstract

Untreated Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) samples were exposed above ground in a durability test for 6 years. The samples consisted of three pieces of wood, 22×95×500 mm, screwed together; two pieces lengthwise with a third piece overlapping. Weight was measured, to calculate moisture content (MC), and samples checked regularly for cracks and fungal growth. Parameters investigated were heartwood/sapwood (pine), annual ring orientation (spruce), stand site, annual ring width and density. Stand site, annual ring width and density had no influence on MC or fungal growth for either pine or spruce. Spruce samples with vertical annual rings had fewer cracks than samples with horizontal annual rings. Pine sapwood samples had a high MC and a large amount of rot fungi, while heartwood had a lower MC and no rot. Most spruce samples were similar to pine heartwood, except from a few samples that had high MC and fungal growth. Those were all sawn from the outer part of the log. Therefore, it can be stated that spruce sawn from the inner part has almost the same properties as pine heartwood, while spruce from the outer part of the log has similar properties to pine sapwood.  相似文献   

5.
We developed individual tree height growth models for Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in Norway based on national forest inventory data. Potential height growth is based on existing dominant height growth models and reduced due to competition by functions developed in this study. Three spatially explicit and two spatially non-explicit competition indices were tested. Distance effects and diameter ratio effects were estimated from the data simultaneously with parameters of the potential modifier functions. Large height measurement errors in the national forest inventory data caused large residual variation of the models. However, the effects of competition on height growth were significant and plausible. The potential modifier functions show that height growth of dominant trees is largely unaffected by competition. Only at higher levels of competition, height growth is reduced as a consequence of competition. However, Scots pine also reduced height growth at very low levels of competition. Distance effects in the spatially explicit competition indices indicated that the closest neighbors are most important for height growth. However, for Scots pine also competitors at larger distance affected height growth. The five competition indices tested in this study explained similar proportions of the variation in relative height growth. Given that unbiased predictions can only be expected for the same plot size, we recommend a spatially explicit index, which describes the distance function with a negative exponential, for use in growth simulators.  相似文献   

6.
Due to the increasing demand for Norway spruce as prime raw material for high-yield pulping, recent interest has focused on Scots pine as an alternative. However, the intrinsic properties of Scots pine, particularly the high amounts of extractives and the fiber properties, have been considered a disadvantage for thermomechanical pulping. A study was therefore conducted on the variations in the spatial distribution and redistribution of lipophilic extractives in spruce and pine wood and thermomechanical pulp (TMP) using cytochemical staining methods and chemical analysis. Chemical analyses showed chips from pine thinnings and sawmill slabs to contain three to five and two to three times, respectively, more extractives than found in spruce; in particular, the amount of triglycerides differed significantly. Results from staining techniques on the abundance and distribution of extractives (i.e., fats) between pine and spruce correlated with amounts detected by Fourier transform infrared spectroscopy and gel permeation chromatography. Cytochemical observations revealed information pertaining to species-specific distribution and redistribution of extractives among TMP fines and fibers and indicated the presence of a molecular film of extractives. Results indicate that the high concentrations of extractives in pine ray parenchyma are released during TMP processing and are redistributed onto the surfaces of the pulps, negatively affecting energy usage during primary refining.  相似文献   

7.
Abstract

To enable use of round Scots pine timber in structural frameworks it is necessary to estimate the mechanical properties of the material. This paper presents data on density, bending strength and modulus of elasticity (MOE) of 533 debarked Scots pine logs with diameter from 75 mm to 250 mm sampled from 10 sites in southern Norway. The results show that round timber can have high values of bending strength and MOE, depending on the sites from which the trees have been collected. Some of the variation in bending properties can be explained by visual characteristics, but since a significant proportion of the residual variance is related to sites, criteria for visual strength grading have to be conservative to be valid across all sites. The potential for machine grading based on measuring MOE is better since this model is more accurate and the random effect of site is smaller.  相似文献   

8.
This research investigates wood defects, particularly the formation of surface cracks, during the production of thermally modified wood and its exposure to cyclic moisture changes. Boards of Norway spruce and Scots pine originating from different steps within the production of ThermoWood® were collected and wood defects were investigated at macroscopic and microscopic scale. Subsequently, the wood was exposed to capillary wetting cycles to record its sensitivity towards cracking. After the modification process, typical anatomical defects of conventional kiln-drying became more frequent and severe, with the magnitude being to some extent depending on the presence of defects in the raw material. At microscopic scale, damages to ray parenchyma and epithelial cells as well as longitudinal cracks within the cell walls of earlywood tracheids were evident in thermally modified wood. Despite a lower water uptake and higher dimensional stability, thermally modified wood was more sensitive to surface cracking during wetting cycles than unmodified wood, i.e. at the outside face of outer boards (near bark). For limiting surface cracking of thermally modified wood during service life, the use of high-quality raw material, the exposure of the inside face of the boards (near pith) and the application of a surface coating are considered beneficial.  相似文献   

9.
Abstract

The choice of species in forestry is important, and a real issue as large areas of wind-damaged forest land in southern Sweden need to be regenerated. To compare the growth potential between the most common tree species in Sweden, ratios between site quality derived from site index values determined with site properties were used. A regression function to determine site index for birch from site properties was used to complement the known relationships between site properties and site index for spruce and pine. In large regions of Sweden the distribution of site quality classes was calculated to compare the special characteristics and demands of the three species. On average, the growth difference for pine compared to spruce was about 60% in southern Sweden and 95% in northern Sweden. Corresponding figures between birch and spruce were 40% and 60%. Birch was expected to produce around 60% of pine in northern Sweden and about 70% in southern Sweden. However, it must be stressed that the comparison is based on survey data encompassing mainly naturally regenerated birch, whereas spruce and pine are mainly planted.  相似文献   

10.
This study provides an analysis on the variability of structural timber of Norway spruce (Picea abies) grown in Norway. Density, modulus of elasticity (MOE) and bending strength were measured on 1188 boards from 205 trees, sampled from 14 sites throughout Southern Norway, Eastern Norway and Trøndelag. The area represents the procurement area for the majority of Norwegian sawmills. The variability of the timber properties was analysed in a linear mixed model where the random variance was divided into variance due to site, variance due to trees and within-tree variance. Models describing variance due to site based on site index, altitude and latitude were developed, and combined with data from the Norwegian National Forest Inventory to estimate mean values and variability of the timber properties. The results showed that major parts of the variance due to site are explained by altitude and site index, and for density also by latitude. Major parts of the variance due to site and the variance due to trees in bending strength and MOE were explained by density.  相似文献   

11.
Abstract

The heartwood and sapwood from Scots pine (PS), Norway spruce (PA), and Oriental spruce (PO) were tested for susceptibility to discoloring fungi and water uptake. In addition, annual ring width and density were measured. The methods used were Mycologg for testing growth of fungi and a modified version of EN 927-5 to investigate water uptake. For pine, the heartwood showed a lower water uptake and no discoloring fungi growing in the tests. The heartwood had a significantly higher density and smaller annual ring width than the sapwood. In PA the heartwood had significantly lower discoloration than sapwood. The total water uptake in g/m2 was significantly higher in sapwood, but not the calculated moisture content. As for wood properties, the density was significantly higher in sapwood compared to heartwood, although there were no differences in annual ring width. Regarding PO, differences in water uptake could be seen between sapwood and heartwood although the densities were similar. These results show that susceptibility to discoloring fungi and water uptake is hard to correlate to a single inherent property when looking at different wood species.  相似文献   

12.
Abstract

In this study, two different methods were used to produce thermally modified wood. One was carried out in a typical kiln drying chamber using superheated steam (SS) and the other used pressurized steam in an autoclave cylinder (PS). Overall, both processes followed the same principles and the wood was not treated with any chemicals. Two wood species were studied, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies). Treatments in the autoclave were carried out under pressure using temperatures of 160°C, 170°C and 180°C. Temperatures of 190°C and 212°C were used in treatments in the chamber at normal air pressure. The colour was measured using L*C*H colour space. Results for both species showed that similar L* (lightness) can be reached at lower (20–30°C) temperatures using PS compared with SS treatment. The hue angle of PS-treated wood was smaller than that of SS-treated wood. No significant difference in C* (chroma) was detected. The difference in E value between PS- and SS-treated wood was smaller for Norway spruce than for Scots pine. The residual moisture content was about 10% higher in wood treated by the PS process compared with the SS process.  相似文献   

13.
Wood modification, of which thermal modification is one of the best-known methods, offers possible improvement in wood properties without imposing undue strain on the environment. This study investigates improvement of the properties of heat-treated solid wood. Scots pine (Pinus sylvestris) was modified in two stages: impregnation with modifiers followed by heat treatment at different temperatures. The impregnation was done with water glass, melamine, silicone, and tall oil. The heat treatment was performed at the temperatures of 180°C and 212°C for three hours. The modified samples were analyzed using performance indicators and scanning electron microscope micrographs. The mechanical and physical properties were determined with water absorption, swelling, bending strength, and impact strength tests. All the modifiers penetrated better into sapwood than hardwood; however, there were significant differences in the impregnation behavior of the modifiers. As regards the effect of heat treatment, generally the moisture properties were improved and mechanical strengths impaired with increasing treatment temperature. In contrast to previous studies, the bending strength increased after melamine impregnation and mild heat treatment. It is concluded that the properties of impregnated wood can be enhanced by moderate heat treatment.  相似文献   

14.
The effects of stand density on increment and branch properties were studied in three spacing experiments of Norway spruce [Picea abies (L.) Karst.]. The stand densities ranged from 350 stems ha−1, regarded as open-grown trees, up to 1,600 stems ha−1, corresponding to the density recommended for forestry practice. Properties of all the branches were measured from the stem apex downwards. The study material included a total of 5,661 branches from 45 trees. Increasing stand density resulted in a decrease in radial increment as well as shorter and narrower crowns, but it had no effect on height increment. The average number of spike knots per tree was 0.87, 0.27, and 0.33 in densities of 350, 700 and 1,600 ha−1, respectively. Additionally, in the widely spaced stands of 350 stems ha−1, the fraction of trees having spike knots was high (over 50%). At a density of 1,600 ha−1, the sample trees had somewhat less branches in a whorl compared with the more widely spaced plots. The most pronounced effect of stand density was the increase in branch diameter with decreasing stand density. At a density of 350 ha−1, the maximum branch diameter of all the sample trees exceeded the diameter limit of quality class B in the European quality requirements for round wood. The results give some indication that trees subjected to severe competition would produce smaller branches per unit of crown projection area. However, the possibilities for reducing branch dimensions relative to stem and crown size through competition appear quite restricted.  相似文献   

15.
Variation of sapwood thickness in terms of a linear measurement and a growth ring count with reference to the age was studied in dominant and suppressed Norway spruce trees. In the trees of both dominance classes the sapwood thickness increased in absolute terms, while its relative portion decreased with the age of the trees growing. Great differences were found in sapwood thickness between dominant and suppressed trees in linear measurements but not in the number of sapwood rings or the rate of the heartwood formation. The number of sapwood growth rings reached 40 in old trees. The index of vigour differed considerably in dominant and suppressed trees.  相似文献   

16.
The effect of seed water content (WC) (2–3, 5–6 and 22–25%, on a fresh weight basis), storage temperature (+4, −20, −80 and −196°C) and storage duration (6, 12, 24, 48 and 60 months) on the germination of white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.) B.S.P.) and lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) seed was investigated. Germination of white spruce control (untreated) seeds and seeds adjusted to 2–3% and 5–6% WC declined after 48 months of storage at −80 and −196°C, with a further decline at 60 months at −20, −80, −196°C. Germination remained high when control white spruce seeds and seeds with 2–3, 5–6% WC were stored at +4°C, over all storage durations. Generally, black spruce and lodgepole pine exhibited high germination at all storage temperatures at 2–3% and 5–6% WC as well as the control (untreated) seed, for up to 60 months in storage. Germination declined for all three species when seed was conditioned to 22–25% WC. This loss in germination was partially recovered in white spruce seed stored at +4, −20 and −80°C after storage durations of 24, 12 and 48 months, respectively, and in black spruce seeds stored at −20 and −196°C after storage durations of 24 months. Mean germination time (MGT) was relatively constant for all species, under all conditions, except for seed conditioned to 22–25% WC, where MGT increased for white spruce seed stored 48 months at −80 and −196°C, and for black spruce seed stored 24 months at +4 and −80°C and 60 months at −196°C. These results show that the optimal storage temperatures are 4°C for white spruce, and 4, −20, −80, and −196°C for black spruce and lodgepole pine, and 2–6% water content is optimal for all 3 species at these temperatures.  相似文献   

17.
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.  相似文献   

18.
采用Pundit、Metriguard、FFT等三种无损检测方法和常规弯曲法对加拿大扭叶松(lodgepole pine)蓝变与非蓝变实木板材的动态及静态弹性模量进行检测和比较研究。结果表明,蓝变材三种动态弹性模量及静态弹性模量均高于非蓝变材;对比分析表明,蓝变材和非蓝变材的动态及静态弹性模量存在差异,其中动态弹性模量差异均达到0.01显著性水平,静态弹性模量差异达到0.05显著性水平,并且心、边材及密度值不同是导致以上差异的主要原因。相关性分析表明,动态与静态弹性模量间相关性达到0.01显著性水平;尽管三种无损检测方法测量结果存在差异,但它们之间仍存在密切相关性,FFT 技术测量的准确性高于Pundit和Metriguard;板材中结子数影响木材动态和静态弹性模量,随着板材结子数增加弹性模量相应地降低。  相似文献   

19.
In order to determine the effect of stocktype and cultivation treatment on the field performance (survival and growth) and physiological status of Picea abies in cutaway peatlands, small bare-root, large bare-root and containerised seedlings were planted in a deep ploughed and a control site. Survival after 2 years was good across all treatment (>90%) except for the large bare-root seedlings growing in the control site (84%). For all the morphological characteristics assessed in this study, there was no significant interaction between stocktype and cultivation treatment indicating that the growth response to site cultivation was not stocktype dependent. After two growing seasons, all Norway spruce seedlings performed better in the deep ploughed site and displayed also better nutritional and physiological status. Regardless of cultivation treatment, mean height, diameter and volume increment were significantly smaller for the large bare-root seedlings while the small bare-root seedlings displayed the greatest growth rates. In order to promote early height growth in container and small bare-root stock, large diameter is important. Other initial characteristics such as foliar nitrogen content may also have a strong influence on first year field performance. The physiological status of the seedlings during the first year after outplanting was assessed using chlorophyll fluorescence (CF) measurements. CF measurements detected a higher level of stress for the large-bare root stock (low Fv/Fm). On the other hand, small bare-root stock displayed highest maximum potential photochemical activity which corresponded to greatest growth rates. Container seedlings demonstrated higher capacity for photosynthetic electron transport during the first five months after planting suggesting that they recovered from planting stress quicker and optimised better light interception and utilization than bare-root stock. It can be concluded that intensive management systems including deployment of best-adapted stocktype and site cultivation can be used to enhance early height growth of Norway spruce on cutaway peatlands.  相似文献   

20.
Diameter, height and volume increment of Scots pine (Pinus sylvestrisL.) and Norway spruce (Picea abies (L.) Karst.) stands wereinvestigated in long-term thinning experiments in southern Finland.The measurement period was on average 19 years, and thinningsconsisted of five different treatments: (1) unthinned; (2) selectivethinning from below where thinning intensity was determinedaccording to the number of stems; (3) selective thinning frombelow where thinning intensity was determined according to standbasal area; (4) systematic thinning where corridors were openedat regular intervals in the stand; and (5) half-systematic thinningwhere corridors were opened at regular intervals and the remainingstrips thinned from below, i.e. a combination of selective andsystematic thinning. The selective (basal area) thinning ofScots pine resulted in a volume growth reduction of about 12per cent, but in Norway spruce it resulted in no marked reductioncompared with the unthinned plots. In both tree species, volumeincrement in the half-systematic and selective (basal area)thinning differed only slightly from each other. The systematicthinning resulted in the lowest volume increment. In the systematicthinning, the total yield (m3 ha–1) somewhat decreasedwith increasing corridor width. In half-systematic thinning,on the other hand, the total yield was not clearly related tocorridor width. A corridor accelerated the diameter incrementof the edge trees. The edge effect progressively diminishedwhen moving deeper into the strip and ended at a distance ofabout 3–4 m from the corridor edge. After the thinning,the height increment first decreased, but later on it recovered.The unthinned plots had more dead trees than the other treatments,but there were no significant differences between the othertreatments. It can be concluded that the prevailing thinningmethod in the Nordic countries, i.e. half-systematic thinning,most probably results in no significant growth and yield losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号