首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
椰壳热解炭化热分析研究   总被引:1,自引:0,他引:1  
椰壳是一种优质活性炭原料,利用同步热重-差热分析仪(TG-DTA)对椰壳的热失重、热效应、热稳定性进行研究,分析了椰壳热解炭化的机理。作者还探讨了椰壳热解温度、升温速度对其炭化得率、分解速率的影响。实验结果表明:在5种升温条件下,椰壳热分析曲线都有两个失重阶段。热解温度区间在200~410℃之间。控制第二失重阶段是椰壳热解炭化的关键,提高升温速率在一定程度上会有利于椰壳热解反应的进行。当升温速率为20℃/m in,此时分解热焓为792.15 J/g,失重为31.925%。热解终温宜选择575℃。为椰壳的炭化工艺优化提供理论依据。  相似文献   

2.
核桃壳与煤共热解的热重分析及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析在不同升温速率(5~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数。实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共热解时存在协同作用;三者的平衡热解温度分别为568.9、709.9和571.0K。应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述。核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol。  相似文献   

3.
以黑龙江帽儿山12种草本可燃物为研究对象,用热重分析法对其升温速率为10℃·min-1的慢速热解过程进行研究,利用TG-DTG曲线分析它们的热解特性,得到了纤维素和木质素的热解与温度、失重量以及失重速率的关系.结果表明:空气气氛下12种草本可燃物的热解均经历3个主要阶段,根据3个阶段的平均失重速率和初始分解温度,可对12种草本可燃物在不同燃烧阶段的燃烧性进行评价.这3个阶段是:1)失水阶段,温度范围是室温~ 120℃,根据该阶段的平均失水速率和初始热解温度判断,猴腿蹄盖蕨、芍药和耧斗菜最易燃;2)综纤维素热分解阶段,温度范围是100 ~370℃,根据综纤维素的平均分解速率判断,耧斗菜的有焰燃烧最剧烈;3)木素热分解阶段,温度范围370 ~500℃,根据木素的平均分解速率判断,宽叶山蒿和蚊子草无焰燃烧最剧烈.  相似文献   

4.
利用热重分析在不同升温速率(5 ~50 K/min)和氮气气氛下对核桃壳、褐煤以及核桃壳-褐煤(质量比1∶1)混合物的热解失重行为进行了研究,求取了热解动力学参数.实验结果表明,随着升温速率的提高,3种原料的失重率下降,热失重速率升高;核桃壳与褐煤共熟解时存在协同作用;三者的平衡熟解温度分别为568.9、709.9和571.0K.应用Coats-Redfern方法进行热解动力学过程分析表明,3种原料均可由一级反应过程描述.核桃壳快速热解和残余物缓慢热解阶段的平均活化能分别为50.6、17.3 kJ/mol,褐煤的平均活化能为21.1 kJ/mol,核桃壳-褐煤混合物快速热解和残余物缓慢热解阶段的平均活化能分别为34.2和14.5 kJ/mol.  相似文献   

5.
树叶组成的热解反应及热稳定性的理论解析   总被引:1,自引:0,他引:1  
王寅  王海晖  朱凤  战婧 《林业科学》2012,48(11):98-106
采用多组分平行反应模型并结合非线性最小二乘拟合技术,对树叶在惰性氛围中的热重(TG)试验结果进行动力学过程的解析,理论上跟踪各组分的热解特性和规律。结果表明:随着温度的提升,树叶经历脱水、挥发油类物质析出、半纤维素、纤维素以及木质素的依次降解并形成焦炭(即固定碳)等过程。温度150℃后树叶的热失重速率(DTG)曲线的变化特征主要由半纤维素、纤维素以及木质素的热解叠加而成,与木材中主要成分的热解现象相似。半纤维素热解几乎完全生成气体,对碳形成的贡献很小;纤维素则稍有不同。木质素对固定碳的含量贡献最大。相应地,半纤维素和纤维素的份额对应工业分析中的挥发分含量,而固定碳含量则取决于木质素所占的比例。工业分析中挥发分的含量高意味着对应材料的热稳定性差,即可燃性强;对于固定碳的含量来说则正好相反。研究结果为评估植物的热稳定性以及防火树种的筛选提供了重要的依据。  相似文献   

6.
为提高木质素的活性、促进木质素的高效利用,以玉米秸秆发酵制乙醇剩余物经碱溶酸沉获得的精制木质素(PL)为原料,在以异丙醇/水的混合溶剂为反应介质、液固比为10∶1(mL∶g)、铝氧单钠固体超强碱作为催化剂条件下降解PL,得到降解木质素(DL),采用正交试验优化降解条件,并对降解前后木质素进行了分析与表征。研究结果表明:优化降解条件为催化剂用量为木质素质量的20%、反应温度200℃、反应时间150 min,此时降解木质素的产率和甲醛值分别为77.5%和0.365。傅里叶红外光谱(FT-IR)、二维核磁共振(2D HSQC)、凝胶渗透色谱(GPC)和热重(TG)等分析表明:固体超强碱对木质素的催化降解很好地保留了木质素的芳香性结构;降解后DL侧链区连接键β-O-4、β-β和β-5/α-O-4含量明显降低,降解使木质素的部分Ar—O—C醚键断裂、酚羟基和醇羟基含量增加、相对分子质量和多分散性明显下降;与PL相比,DL的主热解发生温度范围变窄、最大热解速率降低。  相似文献   

7.
采用热重分析(TG-DTG)对废轮胎和生物质的热解特性进行了分析,研究了原料配比、升温速率及粒度对热解的影响,并采用HSC计算模拟软件对热解气体的分布规律进行了模拟。研究结果表明:废轮胎与生物质共热解过程主要分为干燥阶段(20~200℃)、气化裂解阶段(200~500℃)和二次裂解阶段(500~800℃) 3个阶段。废轮胎掺混比例由100%下降至0时,热解初始温度由358.0℃下降至288.5℃,热解终止温度由473.0℃下降至361.6℃。随着升温速率和原料粒度的增加,废轮胎热解反应的最大失重速率增大,热解终温逐渐升高,反应向高温方向移动。采用Coats-Redfern法得到的废轮胎与生物质共热解阶段(250~500℃)活化能为18.61~40.86 k J/mol,生物质掺混比例增加时反应所需要的活化能减小。HSC计算模拟发现:热解过程气体产物主要为H_2、CO、CH_4和CO_2,随着废轮胎掺混比例下降,H_2、CO和CO_2产量增加,CH_4产量减小。通过可燃性气体总量与CO_2产量比值及热解特性分析发现:废轮胎掺混比例控制在40%~60%时获取的可燃性气体产量较高。  相似文献   

8.
采用热重分析仪对杨木刨花板进行热解,结合Coats- Redfern法分析热重曲线,探讨了反应机理.结果表明:杨木刨花板的热解过程分为失水干燥、快速热解和慢速热解3个阶段;升温速率的提高使热解最大失重速率增大,热解的各个阶段向高温方向横向偏移.快速热解阶段的反应机理满足D3模型,热解的活化能(E) 107.24 kJ/mol;5、10和20℃/min 3种速率下的指前因子(A)值分别为2.09×105、6.57×105和3.22×105 s-1.  相似文献   

9.
基于等转化率法的芒草和玉米秸秆热解特性及动力学研究   总被引:1,自引:0,他引:1  
利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失水、过渡、主热解和炭化4个阶段;随着升温速率增加,热解各阶段均向高温侧移动,失重率增加,表明升温速率增加可促进热解反应的进行。动力学计算结果表明:3种方法拟合的相关系数均大于0.9,且芒草的相关系数大于玉米秸秆;芒草的活化能,KAS和Starink法计算得到的结果很接近,Ozawa法较低;而玉米秸秆的活化能,Ozawa法得到的最高,Starink法居中,KAS法最低。在整个热解过程中,3种方法求得的芒草的活化能随转化率升高波动明显,表明芒草热解过程发生了一系列复杂的化学反应;转化率为0.1~0.3、0.3~0.7及0.7~0.8时,分别对应半纤维素、纤维素及木质素的主热解阶段,这表明芒草三组分热解难易程度为木质素纤维素半纤维素。而玉米秸秆则不太一样,转化率为0.1~0.4时,玉米秸秆活化能急剧增加;转化率为0.4~0.8时,玉米秸秆活化能缓慢下降直至平稳。  相似文献   

10.
棕榈壳热解失重特性及动力学研究   总被引:1,自引:0,他引:1  
采用热重-红外联用(TG-FTIR)、裂解-气相色谱/质谱联用(Py-GC/MS)技术和小型固定床装置,考察了棕榈壳的热解失重过程和产物特性,并进一步评价了热解半焦的气化反应性。结果表明:棕榈壳热解失重过程大致分为干燥(25~236℃,3.42%)、主失重(236~400℃,52.31%)和炭化(400~850℃,14.90%)3个阶段,1.5级或2级反应可以较好描述棕榈壳热解反应的主失重过程;升温速率10~30 K/min下,反应表观活化能为67.63~76.47 k J/mol;热解过程主要气体产物的释放量顺序分别为CO2、H2O、CH4和CO;600~850℃下,棕榈壳主要热解产物为液相产物,其质量产率36.8%~50.9%,能量产率41.3%~58.9%,主要组分包括苯酚、乙酸、十八烷酸、十六烷酸、4-烯丙基-2,6-二甲氧基苯酚等物质,其中苯酚GC含量较高(12.56%~15.49%),这可能主要与原料木质素的含量较高有关;固相产物的质量和能量产率分别为20.6%~26.7%和27.4%~35.0%,其CO2气化反应性相对低于稻秆、木粉等常见生物质。  相似文献   

11.
采用氯化锌/乙酰胺低共熔离子液(DES)处理2种木质素,加水作为反相溶剂得到再生木质素。研究用其替代部分苯酚制备木质素改性酚醛树脂(LPF)的基本性能变化,结合热重分析法(TGA)分析树脂的热解特性,引入Flynn-WallOzawa模型量化了树脂的表观活化能。结果表明,经该DES处理前后的磨木木质素和酶解木质素均可在保持树脂基本性能稳定的前提下替代20%苯酚制备LPF。升温速率β影响树脂的热分解过程,4种LPF的初始分解温度、热解过程所需的活化能均高于未改性酚醛树脂(PF),特别是经氯化锌/L酰胺DES处理后的再生磨木木质素改性酚醛树脂(RMLPF),其热降解温度更高,残炭率更多,热解过程所需的活化能比PF高出2~4倍,热稳定性明显提高。  相似文献   

12.
应用热重分析方法研究了黑龙江地区10种常见树叶的热解行为。利用TG-DTG曲线分析它们的热解特性,了解到木质素、半纤维素及纤维素的热解特性和温度、失重量以及失重速率之间的关系。结果表明:在空气气氛下10种树叶的热解均经历水分析出、快速热解、炭化3个主要阶段;在主要的快速热解阶段样品的热解动力学参数可以由Arrhenius反应方程和Coats-Red fem模型求得,计算得出樟子松、黑皮油松具有较好的防火性能,着火温度、活化能分别是:274.69℃、39.420KJ/mol,274.90℃、42.9110KJ/mol。。  相似文献   

13.
液化木基热塑性酚醛树脂的固化反应动力学   总被引:2,自引:0,他引:2  
利用差示扫描量热法(DSC)研究了液化木基热塑性树脂(PWF)的固化特征及其动力学,用热重法(TG)和傅立叶红外光谱技术(FT-IR)研究了固化后PWF的热降解性能和结构特征,并对比研究了传统热塑性酚醛树脂(PF)的固化反应,旨在为确定新型PWF的固化工艺提供依据.结果表明,六次甲基四胺(HMTA)用量对固化反应的表观活化能影响较大,HMTA与树脂质量比为100:10时,表观活化能较低,为107.76kJ/mol,低于相同条件下PF的表观活化能(141.35kJ/mol);HMTA用量对固化反应级数几乎没有影响,反应级数恒定在0.95,与PF的固化反应级数相同.最大固化速率温度和升温速率(Tp-β)外推法求得PWF固化工艺温度在135~137℃.PWF和PF的热重曲线变化趋势在30 ~ 291℃完全相同,两者在200℃以前几乎不发生失重现象,当温度超过200℃后,两者皆有轻微的失重,PWF和PF的热降解温度分别为291和296℃.IR结果证明固化后PWF和PF的结构相似.  相似文献   

14.
利用傅里叶红外光谱仪、扫描电镜和低温氮吸附法表征芒草热解焦的物化特性,采用非等温法和主曲线法结合研究芒草热解焦CO_2气化反应机理。结果表明:随着制备温度的升高,芒草热解焦的有机质减少;热解过程有利于孔隙结构的形成,增大了热解焦比表面积和孔容,600℃时芒草热解焦(MPC600)的微孔率最大,为86.73%;随着制备温度和气化升温速率的升高,芒草热解焦气化反应的最大失重速率温度向高温侧偏移。采用Ozawa法对芒草热解焦气化动力学参数进行计算,制备温度为400、600和800℃的芒草热解焦平均活化能分别为171.87、181.20和184.45 kJ/mol;所有制备温度下获得的芒草热解焦的活化能与转化率无关,反应可用单一的动力学机理函数描述。主曲线法判定动力学模型机理函数结果表明:芒草热解焦气化动力学符合一维相边界反应(R_1)机理。  相似文献   

15.
将三大组分的模型化合物微晶纤维素、木聚糖和木质素进行不同配比得到合成生物质,对不同配比的合成生物质样品进行热重(TG)分析,研究了其溶剂辅助热解液化行为,并得出三大组分在溶剂辅助热解液化过程中的协同作用。研究发现:温度低于350℃时,半纤维素对纤维素的降解有一定的促进作用;而高于350℃时,则有明显的抑制作用;半纤维素和纤维素均对木质素的降解起到抑制作用。采用极端顶点法选取典型配比的合成生物质,运用热裂解-色谱-质谱联用技术(Py-GC/MS)探究了合成生物质的溶剂辅助热解液化产物分布,得出了生物质各组分对溶剂辅助热解液化产物分布的影响。结果表明:合成生物质中的木质素含量较高会促进酸类物质的生成,纤维素和半纤维素的溶剂辅助热解液化产物对木质素溶剂辅助热解生成酚类化合物有一定的抑制作用;对于酯类化合物来说,合成生物质溶剂辅助热解液化都生成了较多的酯类物质,生物质三组分不同的配比促进了酯类化合物的生成。  相似文献   

16.
用热分析法研究竹材热解特性影响因素   总被引:1,自引:0,他引:1  
运用热重/差示扫描(TG/DSC)同步热分析法,通过实验分析了不同氮气流量、不同升温速度、不同竹龄等因素对毛竹材热解过程的影响。结果表明:(1)氮气流量的变化对差热扫描量热曲线没有明显影响,随着氮气流量的增大,在热解过程中失重增大,且最终剩余固体产物量呈递减的趋势。(2)升温速度变化对热重曲线没有明显影响,对DSC曲线的影响较明显。随着升温速度的增大,在整个热解过程中吸放热更明显。(3)在相同的试验条件下,不同竹龄的竹材的热解过程中热量吸放和失重变化温度点存在着一定的差值。  相似文献   

17.
研究不同升温速率(β=5、10、20、40 K/min)下羟基酪醇的热稳定性、分解动力学和贮存期。利用热重分析得到羟基酪醇在氮气氛围中不同升温速率(β)下的热分解曲线,运用3种多升温速率法Kissinger法、Friedman法和Flynn-Wall-Ozawa法以及2种单升温速率方法 Coats-Redfern法和Achar法进行动力学分析,计算热分解的表观活化能(Ea)和指前因子(A),且根据Ea和A推算羟基酪醇的贮存期。结果显示:羟基酪醇的热分解过程一步完成,在升温速率为10 K/min时,从260~409℃为羟基酪醇的主要失重阶段;TG曲线随着温度的升高而迅速出现陡峭明显的失重台阶,DTG曲线亦出现负值,且随着温度的升高而急剧下降,在305.2℃达到了DTG的峰值,此时达到最大热失重速率为-12.91%/min;升温速率的变化对羟基酪醇的分解有影响,随着速率的升高,羟基酪醇的热分解温度逐渐升高,热分解曲线略微向高温移动,呈现了分解滞后现象。羟基酪醇的热分解机制符合一维扩散(D1)模型。测得平均Ea为122.40 k J/mol,A为3.37×1010min-1。根据Ea和A可推断,在室温25℃下,羟基酪醇在氮气氛围下的理论贮存期为4~5年。  相似文献   

18.
木质素作为三维网状无定形高聚物,其化学结构非常复杂。为探究热解过程中产物的分布及形成路径,利用PyGC/MS联用仪在不同的热解温度下对软木木质素中最典型的C—C键(β-5型)模型化合物的热解产物进行详细研究。结果表明:β-5型化合物在低温下主要发生C—O键的开环断裂,热解产物仍以二聚体的酚类和酮类化合物为主。随着热解温度的升高,二聚体继续发生二次裂解反应,形成大量的小分子芳香族化合物,相对含量约占15%~30%;当热解温度为900℃时,热裂解生成的化合物之间能够通过缩聚反应形成萘和茚,其相对含量约占产物含量的9%。同时,反应路径也进一步揭示了热解过程中的转化机理。  相似文献   

19.
竹材热解特性研究   总被引:2,自引:0,他引:2  
主要研究了竹材在快速热解与常规热解下液相、固相及气相产品的得率差异.快速热解下升温28℃/s,停留时间0.76 s,温度500℃,液相产品竹焦油得率为48.5%,主要组分为2,6-二甲氧基苯酚和2-甲氧基苯酚(愈疮木酚),在常规热解下升温速率1℃/min,温度500℃,液相得率为30%(包括水),组分主要为乙酸.在常规或缓慢热解中,固相产物,炭的微孔结构中,当热解温度低于550℃的情况下,主要孔径在6.0~22.0 nm,当热解温度在650~750℃,主要孔径<2 nm.  相似文献   

20.
为综合利用茶梗废弃物,采用同步热重-差热分析法(TG-DTA)研究了茶梗的热解过程及动力学。结果表明:在氮气气氛下不同升温速率茶梗样品的TG-DTG-DTA曲线中,茶梗的热失重过程可分为5个阶段,主分解反应发生在第三、四阶段,在4种不同的升温速率(10、15、20和25 K/min)下,这两个阶段的平均失重率分别为55.12%和28.48%,且均表现为放热过程;随着升温速率的增大,第四阶段分解反应向高温区域移动。采用Kissinger法、FWO峰值转化率近似相等法、FWO等转化率法分别计算了茶梗的热解动力学参数。结果显示:Kissinger法和FWO峰值转化率近似相等法更适用于动力学参数的求解,两种方法得到的表观活化能分别为666.53和642.80 kJ/mol;Kissinger法计算得到的指前因子对数值lnA=145.83。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号