首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
该研究采用蒸汽爆破法 ,以速生毛白杨为原料 ,在爆破时间都为 4min ,爆破压力分别为 1.5 ,2 .0 ,2 .5 ,2 .7MPa的压力条件下 ,研究比较了不同爆破压力对原料得率、产酶活力和纤维素酶解糖化的影响 .研究结果表明 :①在相同条件下 ,随着爆破压力由 1.5MPa升至 2 .7MPa ,原料得率由 84%逐渐降低至 5 1% ;②以不同爆破压力获取的毛白杨原料配合麦麸作为纤维素酶产酶培养基 ,随着爆破压力的增加 ,酶活性也随之增加 ,但也与爆破后原料的纤维素含量有关 .只有爆破后毛白杨原料的纤维素含量高时 ,酶活性才大 .每克干曲酶活力高达 139.3U/ g ;③将经过不同爆破条件预处理的毛白杨木粉进行酶解实验 ,随着爆破压力的增加 ,酶解糖化率也随之增加 ,最高爆破压力 (2 .7MPa)处理过的木粉可使酶解糖化率高达 6 5 .0 % ,比对照提高了 4.0倍 .  相似文献   

2.
该研究采用蒸汽爆破法,以速生毛白杨为原料,在爆破时间都为4min,爆破压力分别为1.5,2.0,2.5,2.7MPa的压力条件下,研究比较了不同爆破压力对原料得率、产酶活力和纤维素酶解糖化的影响。研究结果表明:①在相同条件下,随着爆破压力曲1.5MPa升至2.7MPa,原料得率由84%逐渐降低至51%;②以不同爆破压力获取的毛白杨原料配合麦麸作为纤维素酶培养基,随着爆破压力的增加,酶活性也随之增加,但也与爆破后原料的纤维素含量有关,只有爆破后毛白杨原料的纤维素含量高时,酶活性才大,每克干曲酶活力高达139.3U/g;③将经过不同爆破条件预处理的毛白杨木粉进行酶解实验,随着爆破压力的增加,酶解糖化率也随之增加,最高爆破压力(2.7MPa)处理过的木粉可使酶解糖化率高达65.0%,比对照提高了4.0倍。  相似文献   

3.
为探寻适合红麻纤维蒸气爆破预处理与酶解糖化的技术参数,开展红麻纤维气爆压力、保压时间、填料量等蒸气爆破预处理技术参数研究,并对蒸气爆破预处理后的红麻纤维进行浴比、酶解时间、酶种类、酶配比、酶用量等酶解糖化单因子试验与正交试验。结果表明:红麻纤维气爆预处理以填料量100%、气爆压力2.5 MPa、保压时间240~300 s的效果较好;红麻纤维酶解糖化的较优工艺参数为浴比(1∶5.00)~(1∶7.50),纤维素酶和木聚糖酶的配比2∶3,采用混合酶(1.50%纤维素酶+2.250%木聚糖酶),p H 5.0,糖化率可达70%以上。  相似文献   

4.
为研究爆破维压时间对胡枝子原料化学成分、结晶度的影响,采用蒸汽爆破预处理方法,以胡枝子为原料,在爆破压力为2.25 MPa,爆破维压时间为2、3、4、5、6、10 min的条件下进行试验。结果表明:蒸汽爆破处理后纤维素、木素含量变化不大,而半纤维素含量显著降低;蒸汽爆破处理后的物料结晶度比未处理的木质纤维素原料提高了60.67%。以胡枝子为酶解糖化原料,考察了温度、时间、用酶量、底物浓度4个影响因素,得到了最佳的条件为:温度46℃、时间60 h、用酶量80 U、底物浓度5%。在此条件下,对比了原料与不同蒸汽爆破维压时间处理后胡枝子物料的酶解糖化率。结果表明:蒸汽爆破预处理可使糖化率提高约2.8倍,达到84%,极大地提高了纤维素酶的可及度,是一种有效的预处理方法。   相似文献   

5.
该研究以汽爆毛白杨木粉作为底物 ,研究了反应温度、作用 pH值、酶的用量和作用时间对纤维素酶解的影响 .研究结果表明 :反应温度、作用 pH值、酶的用量和作用时间对纤维素酶解爆破后的毛白杨木粉都有很大的影响 .酶解最佳条件 :温度 45℃、pH 5 .0、时间 80h ,酶的用量 2 5U/g .  相似文献   

6.
该研究以汽爆毛白杨木粉为原料,采用正交实验法进行同时糖化发酵(SSF)来生产乙醇,通过考察反应温度、pH值、酶浓度和酵母用量来寻找绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件,研究结果表明:①在相同条件下,同时糖化发酵可提高汽爆毛白杨木粉转化成乙醇的效率,转化率高达86%,比分步糖化发酵(LHF)提高了1.6倍;②绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件为:反应温度36℃,pH值5。0,酶浓度25u/g,酵母用量(湿重)0.01g/mL发酵液。  相似文献   

7.
该研究以汽爆毛白杨木粉为原料 ,采用正交实验法进行同时糖化发酵 (SSF)来生产乙醇 .通过考察反应温度、pH值、酶浓度和酵母用量来寻找绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件 .研究结果表明 :①在相同条件下 ,同时糖化发酵可提高汽爆毛白杨木粉转化成乙醇的效率 ,转化率高达86 % ,比分步糖化发酵 (LHF)提高了 1.6倍 ;②绿色木霉纤维素酶和酿酒酵母同时糖化发酵转化汽爆毛白杨木粉成乙醇的最佳条件为 :反应温度 36℃ ,pH值 5 .0 ,酶浓度 2 5U/ g ,酵母用量 (湿重 ) 0 0 1g/mL发酵液 .  相似文献   

8.
里氏木霉DWC5纤维素酶的性质及应用的研究   总被引:2,自引:0,他引:2  
对里氏木酶DWC5产生的纤维素酶性质进行了研究.里氏木霉DWC5粗纤维素酶粉在常温下可保存1 a.纤维素酶最适作用条件为50℃,pH 4.8,40℃以下酶稳定性较好,55℃1 hCMC酶活性保持83.23%,滤纸酶活性保持76.48%,70℃15 min酶活性几乎全部丧失.50℃时纤维素酶在pH4~8范围内稳定,相对酶活力保持在70%以上.将里氏木酶DWC5产生的纤维素酶应用于白酒和酒精发酵中,在每克玉米发酵料中加入6活力单位的纤维素酶,原料平均出酒率提高0.7%,相对出酒率提高2.7%;在每克高粱发酵料中分别加入5.7活力单位、11.4活力单位的纤维素酶,平均酒度分别比对照组增加0.5°和1°,相对出酒率分别比对照组提高14.29%和25.71%.  相似文献   

9.
纤维素酶预处理小麦秸秆制备乙酰丙酸的效果研究   总被引:1,自引:0,他引:1  
以小麦秸秆为原料,采用纤维素酶进行预处理,然后酸水解制备乙酰丙酸.探讨了预处理温度、时间、酶解液用量及原料粒度对乙酰丙酸得率的影响.研究结果显示:预处理可有效地促进小麦秸秆的降解,提高乙酰丙酸的得率.在预处理温度为56.27℃、预处理时间为6.31h、酶解液用量为31.6 U/g、原料粒度为70目时,乙酰丙酸的得率比相同条件下没有进行纤维素酶预处理的试样提高了5.83百分点.  相似文献   

10.
[目的]对玉米芯木糖-纤维素酶法分级工艺中的稀酸预处理、蒸煮预处理和木聚糖酶解工艺进行优化。[方法]以干燥的玉米芯为原料,先进行稀酸-蒸煮预处理,研究不同因素对木糖得率的影响,然后再对物料进行木聚糖酶酶解。[结果]得到的玉米芯酸预处理优化工艺为:固液比1∶10 g/ml,H2SO40.5%,水浴70℃,处理2.0 h,木糖的损失率为4.72%,木糖酶解得率为30.03%。酸预处理后玉米芯残渣蒸煮预处理条件为:固液比1∶10 g/ml加入水,在120℃预水解2.0 h,蒸煮液木糖得率为54.77%,总酶解得率为69.11%。酶水解条件:pH 5.0,加酶量2 800 IU/g玉米芯,50℃水解36 h,总酶解得率83.41%。[结论]玉米芯蒸煮预处理能提高木糖的得率,单一用稀酸预处理再酶解得到木糖的得率并不理想。  相似文献   

11.
[目的]探讨碳氮源对里氏木霉发酵产纤维素酶的影响,以及纤维素酶水解稻草的条件。[方法]通过添加不同的碳源和不同浓度的酵母粉,探讨里氏木霉合适的发酵条件;使用不同添加量的纤维素酶对稻草进行酶解;分别利用纤维素酶、纤维素酶和木聚糖酶混合酶对稻草进行酶解反应。[结果]利用乳糖和稻草的复合碳源和12 g/L的酵母粉进行水解时,纤维素酶活性较高。酶解适宜的酶用量为每克稻草底物200 U的滤纸酶。用纤维素酶及木聚糖酶混合酶酶解稻草96 h的酶解得率为65.4%。[结论]该研究可为里氏木霉纤维素酶生产和酶解稻草的应用提供一定的依据。  相似文献   

12.
研究不同预处理方法对玉米秸秆酶解和乙醇发酵的影响。比较玉米秸秆经粉碎、汽爆和水热3种预处理后酶解液葡萄糖含量、酶解率、乙醇得率以及发酵液中抑制物乙酸、糠醛和羟甲基糠醛的含量,对不同预处理方法进行评价。结果表明:水热超细玉米秸秆能有效提高酶解率,在固液比2:10,酶解48h时,生成葡萄糖含量为60.6g.L-1,纤维素酶解率为63.13%,并且产生的乙酸、糠醛和羟甲基糠醛的含量很低;以此水解液发酵生产乙醇,乙醇含量为28.29g.L-1,乙醇得率为46.68%,为理论乙醇得率的91.5%。说明采用水热超细秸秆可有效提高纤维素酶解率和乙醇得率。  相似文献   

13.
[目的]为提高芒草的酶解产糖得率,研究不同预处理对其影响。[方法]采用射线辐照与碱性双氧水对芒草进行协同预处理,考察对其酶解产糖的影响。[结果]经400 k Gy剂量射线辐照预处理后,芒草酶解产还原糖的得率为76.24 mg/g;采用400 k Gy剂量射线辐照与碱性双氧水协同预处理,芒草酶解产还原糖的得率为505.08 mg/g,较只进行相同剂量射线辐照处理提高了5.6倍。通过工艺优化,得出较优水解条件为:预处理温度30℃、Na OH浓度1.2%、双氧水浓度2%、处理时间6 h。[结论]射线辐照与碱性双氧水协同预处理能够大大提高芒草酶解产糖效率,为利用其制备燃料乙醇提供了新的理论依据。  相似文献   

14.
纤维素酶预处理对葛渣异黄酮提取的影响   总被引:1,自引:1,他引:0  
【目的】对纤维素酶预处理提取葛渣异黄酮的条件进行优化。【方法】在单因素试验基础上,采用响应面分析法研究纤维素酶量、酶解温度、pH值和酶解时间对异黄酮得率的影响,优化提取条件。【结果】建立了纤维素酶量、酶解温度、pH值、酶解时间与异黄酮得率之间的回归模型,得到纤维素酶预处理的最佳条件:纤维素酶用量11mg(以5g葛渣计),酶解温度51℃,pH 5.0,酶解时间2.3h,异黄酮得率可达12.34mg/g,比传统醇提法得率提高57%。【结论】纤维素酶预处理提取葛渣异黄酮效果较好,异黄酮得率较高。  相似文献   

15.
酶法提取豆渣中水溶性膳食纤维工艺研究   总被引:1,自引:0,他引:1  
以大豆分离蛋白质时所产生的废豆渣为原料,采用酶法提取豆渣中水溶性膳食纤维,以豆渣水溶性膳食纤维得率为指标,考察纤维素酶添加量、溶液p H、酶解次数、酶解温度和酶解时间5个因素,通过单因素试验与均匀设计,确定了制备水溶性膳食纤维的最佳酶解条件,纤维素酶添加量为原料的2%,p H 4.5,酶解温度为51℃,酶解时间为2.0 h。在最佳条件下,水溶性膳食纤维得率可达11.48%,该结果可为豆渣中制备水溶性膳食纤维酶的选择和应用提供参考。  相似文献   

16.
碱性预处理对稻草秸秆酶解的影响   总被引:2,自引:0,他引:2  
以稻草秸秆为原料,弱碱性预处理后进行酶解糖化,对预处理前后的稻草秸秆进行扫描电镜观察,研究预处理条件对稻草秸秆半纤维素、纤维素、木质素含量及损失率的影响,通过酶解还原糖的释放量来判断预处理的效果.结果表明:碱性预处理降低了稻草秸秆中木质素的含量,提高了纤维素的含量,增加了纤维素酶与底物的酶解可及度,促进了稻草秸秆酶解糖化.经2.0%NaOH、60 ℃、固液比1﹕12处理24 h后的稻草秸秆,在pH5.0、加酶量31.2 mg/g、45 ℃条件下酶解120 h的还原糖达到了790.3 mg/g,糖化率为81.01%.扫描电镜观察显示,经碱性预处理过的稻草秸秆孔隙度增大,机械组织暴露,酶解的有效比表面积增大,酶解速率加快.  相似文献   

17.
利用摇瓶确定的优化培养基配方和产酶条件,在30 L罐中研究了里氏木霉HC -415菌利用稻草液体发酵产纤维素酶发酵液pH值、纤维素酶活性等随时间变化的动态规律,研究了发酵液纤维素酶的提取及得率等.所得未脱盐冻干纤维素酶粉CMC酶活性平均为355.0 IU/g, FPA平均为44.3 IU/g.相对发酵液得率平均为16.00 g/L.酶粉对发酵液CMC酶活性平均得率为77.16%, FPA酶活性平均得率为58.10%.  相似文献   

18.
【目的】研究对甲苯磺酸(p-toluenesulfonic acid,p-TsOH)耦合碱性过氧化氢(AHP)预处理对不同木质纤维素酶解率及乙醇产率的影响,为农林废弃物纤维素生物转化提供理论依据。【方法】以芒草秆、小麦秸秆和杨木为供试材料,分别采用p-TsOH处理(质量分数70% p-TsOH水溶液于80 ℃处理20 min)以及p-TsOH耦合AHP两步处理(先用质量分数70% p-TsOH水溶液于80 ℃处理20 min,之后用pH 11.5、体积分数2% H2O2于50 ℃、120 r/min恒温振荡器中反应12 h)2种方法对3种材料进行预处理,分析不同预处理方法对3种材料化学组成、形态结构(扫描电镜观察、傅里叶变换红外光谱、X-射线衍射、结晶度、保水值)的影响,并研究纤维素酶添加量(5,10,15 FPU/g,以纤维素质量计算)及不同发酵工艺(同步糖化发酵、分步糖化发酵)对p-TsOH耦合AHP两步处理3种材料纤维素酶解率及乙醇产率的影响。【结果】采用p-TsOH处理以及p-TsOH耦合AHP两步处理后,芒草秆、小麦秸秆和杨木中的半纤维素和木质素含量明显降低,纤维素含量明显提高,其中p-TsOH耦合AHP两步处理的效果更明显,该法处理的芒草秆、小麦秸秆和杨木的木质素脱除率分别为97.01%,96.50%和94.01%,半纤维素脱除率分别为82.50%,84.21%和81.19%,纤维素保留率分别为87.97%,87.85%和90.53%。采用p-TsOH处理以及p-TsOH耦合AHP两步处理后,芒草秆、小麦秸秆和杨木的微观结构、傅里叶变换红外光谱、X-射线衍射图谱发生了明显变化,结晶度及保水值均明显增加。纤维素酶添加量5 FPU/g、酶解72 h时,芒草秆和小麦秸秆的酶解率均超过90%,而杨木的酶解率为78%;纤维素酶添加量15 FPU/g、酶解12 h时,芒草秆、小麦秸秆的酶解率达到100%,杨木的酶解率为73%;纤维素酶添加量10 FPU/g、酶解24 h时,芒草秆、小麦秸秆和杨木的酶解率均达到95%以上。当底物质量浓度为130 g/L、纤维素酶加量为10 FPU/g、发酵96 h时,p-TsOH耦合AHP两步处理芒草秆、小麦秸秆和杨木同步糖化发酵的乙醇产率分别为92.63%,90.07%和88.00%,高于分步糖化发酵工艺的乙醇产率(86.40%,84.21%和78.09%)。【结论】p-TsOH耦合AHP两步处理可以在温和水溶液条件下选择性脱除原料中的木质素和半纤维素,得到富含纤维素的样品,对不同原料具有较强的适用性,应用前景良好。  相似文献   

19.
慈竹作为一种富含纤维素、分布广泛的草类资源,是生产纤维素燃料乙醇的潜在原料。本文采用碱性亚硫酸盐法与低压蒸汽爆破相结合对慈竹原料进行预处理,在保留碳水化合物的同时能够有效脱除大量木质素进而提升后续的纤维素酶水解效率。通过正交试验确定最优工艺条件为反应温度140 ℃、亚硫酸盐用量40%、氢氧化钠用量15%。水解试验中加入质量分数5%的最优工艺条件预处理慈竹原料72 h,纤维素酶解生成葡萄糖得率达到88.54%。在此基础上将碱性亚硫酸盐与低压蒸汽爆破预处理相耦合,有效简化了预处理工艺并降低成本,可实现慈竹原料“一步法”高效预处理,纤维素保留率为89.25%,葡萄糖得率达87.25%。   相似文献   

20.
利用白腐真菌发酵制备的木质素降解酶粗酶液对玉米秸秆进行预处理,发现木质素降解酶对纤维素酶水解糖化有一定的抑制作用.粗过氧化物酶发酵液预处理后,还原糖得率降低了40.3%;纤维素酶水解微晶纤维素所得葡萄糖质量浓度降低了2.7%:粗漆酶发酵液预处理后,还原糖得率降低了3.8%,葡萄糖质量浓度降低了2.9%;混合酶发酵液预处...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号